[PDF] Cours de Mécanique des Systèmes de Solides Indéformables





Previous PDF Next PDF



Cours de Mécanique des Systèmes de Solides Indéformables

Conformément au descriptif de la mécanique des systèmes de solides indéformables le cours est articulé en sept chapitres : Calcul vectoriel-Torseurs



mini - Mécanique des solides

Mécanique des solides. Cours + Exercices. 2eédition. Yves Berthaud. Professeur à l'UPMC. Cécile Baron. Chargée de recherche CNRS Aix-Marseille Université.



Mécanique du solide

u r r. ?=? le vecteur rotation du cylindre. Page 51. Mécanique du solide transparents de cours



Polycopié dexercices et examens résolus: Mécaniques des

Ces exercices couvrent les sept chapitres du polycopié de cours de la mécanique des systèmes indéformables : Calcul vectoriel-Torseurs. Cinématique du solide



COURS DE MECANIQUE 2ème année

COURS DE MECANIQUE. 2ème année. Catherine POTEL Philippe GATIGNOL. Chapitre 4. DYNAMIQUE DU SOLIDE. Université du Maine - UFR Sciences et Techniques.



COURS DE MÉCANIQUE DES SYSTÈMES DE SOLIDES

solides indéformables le cours est articulé en sept chapitres : Un torseur est un outil mathématique utilisé principalement en mécanique du solide ...



mecanique du solide rigide enseignement de licence de mecanique

D'où on peut conclure que le champ de vitesse d'un solide est un champ équiprojectif (voir le cours sur les torseurs). C'est donc un champ de moment d'un 



Matériaux Mécanique des matériaux

Polycopié du cours : Mécanique des Matériaux S. Pommier Physique de l'état solide



Mécanique des solides déformables

/! Ne pas utiliser comme des généralités les formules de ce cours /!. Nous aurions dit que la grille subit un cisaillement… et non plus une élongation. Notre 



Unisciel – L'université des sciences en ligne

Unisciel – L'université des sciences en ligne



MECANIQUE DU SOLIDE RIGIDE - sorbonne-universitefr

CHAPITRE I - CALCUL VECTORIEL – RAPPELS DE MATHEMATHIQUES 1 Espace vectoriel et représentation d’un vecteur Soit Eun espace vectoriel de dimension n = 3 en fait ?3 de base be=(12ee3) GGG formée de 3 vecteurs linéairement indépendants



Searches related to cours mécanique du solide pdf PDF

On appelle solide un système matériel géométriquement parfait indéformable et constitué de matière homogène et isotrope Si A et B (fig 1)sont deux points quelconques du solide on a la rela-tion : AB = Cte ?t EXEMPLES –Bielle ou vilebrequin d’un moteur à explosion levier de commande d’un cric Repère

  • Présentation Du Cours Mécanique Du Solide

    Plan du Cours

  • Exercices & Examens de Mécanique Du Solide

    Pour télécharger les QCM, exercices et examens de Mécanique du Solide, Cliquez sur les liens ci-dessous. 1. Exercices et Examens de Mécanique du Solide

Qu'est-ce que le cours de mécanique du solide ?

Conformément au descriptif de la mécanique des systèmes de solides indéformables, le cours est articulé en sept chapitres : Mouvement d’un solide autour d’un point ou d’un axe fixes. NOTE: N’oubliez pas de voir des TD, QCM, Exercices et Examens de Mécanique du Solide.

Quels sont les chapitres de la mécanique des systèmes de solides indéformables ?

Conformément au descriptif de la mécanique des systèmes de solides indéformables, le cours est articulé en sept chapitres : Mouvement d’un solide autour d’un point ou d’un axe fixes. NOTE: N’oubliez pas de voir des TD, QCM, Exercices et Examens de Mécanique du Solide. Liens dans la section ci-dessous.

Qu'est-ce que la mécanique du solide?

Mécanique du solide, transparents de cours, MP, Lycée Montesquieu (Le Mans), Olivier Granier 43 • Actions de contact entre deux solides : Un système matériel solide (S) est en contact avec un support solide ( ?) ne faisant donc pas partie de (S).

Quels sont les avantages de la mécanique du solide?

Mécanique du solide, transparents de cours, MP, Lycée Montesquieu (Le Mans), Olivier Granier 74 4 - Application à la résolution des problèmes : L’étude d’un mouvement avec contact de solides fait intervenir notamment les forces de contact comme inconnues.

Cours de Mécanique des Systèmes de

Solides Indéformables

M. BOURICH (ENSAM)

Deuxième édition 2014

AVANT²PROPOS

Ce manuel est un cours de base de la mécanique des systèmes de solides indéformables,

SMUPLŃXOLqUHPHQP GHVPLQp MX[ pPXGLMQPV GH OM GHX[LqPH MQQpH GH O·eŃROH 1MPLRQMOH GHV 6ŃLHQŃHV $SSOLTXpHV

de Marrakech. La première édition du présent manuel est constituéH GX ŃRXUV TXH Ó·ML MVVXUp HQPUH 2004

et 2010, en deuxième année SMP à la faculté poly-disciplinaire de Safi. Cette seconde édition respecte le

ŃRQPHQX GX GHVŃULSPLI GH OM PpŃMQLTXH GHV V\VPqPHV GH VROLGHV LQGpIRUPMNOHV GH OM ILOLqUH (*7 GH O·eŃROH

Nationale des Sciences Appliquées de Marrakech, accréditée.

L'objectif de ce cours est d'apporter une contribution à l'acquisition d'une culture scientifique de

base permettant une meilleure compréhension des lois du mouvement et la maîtrise dans le maniement

des outils de la mécanique.

FOMTXH ŃOMSLPUH V·RXYUH SMU OM SUpŃLVLRQ GHV RNÓHŃPLIV HP GHV ŃRPSpPHQŃHV YLVpHVB I·LQPURGXŃPLRQ GH

pourra relater les événements PMUTXMQPV GH O·OLVPRLUH GH OM PpŃMQLTXHB

Conformément au descriptif de la mécanique des systèmes de solides indéformables, le cours est

articulé en sept chapitres :

Calcul vectoriel-Torseurs,

Cinématique du solide,

Géométrie des masses,

Cinétique du solide,

Dynamique du solide,

Liaisons-Forces de liaison,

0RXYHPHQP G·XQ VROLGH MXPRXU G·XQ SRLQP RX G·XQ M[H IL[HVB

3RXU O·pOMNRUMPLRQ GH ŃH ŃRXUV SRO\ŃRSLp Ó·ML XPLOLVp GH QRPNUHXVHV UHVVRXUŃHV SpGMJRJLTXHV

citées en bibliographie : ouvrages, sites Web et le polycopié de mon cher enseignant Monsieur M.

Hasnaoui.

Gageons que ce cours constituera un précieux outil pédagogique pour les étudiants, tant pour une

SUpSMUMPLRQ HIILŃMŃH GHV H[MPHQV TXH SRXU O·MŃTXLVLPLRQ G·XQH VROLGH ŃXOPXUH VŃLHQtifique.

M.Bourich

Illustration de couverture :

GALILÉE (Galileo Galilei, 1564-1642)

(Source : https://www.delcampe.net)

Mathématicien, philosophe et astronome italien. Il utilisa le premier, en 1610, un système optique

pour observer le ciel et révolutionna l'observation de l'Univers. Il découvrit l'inégalité de la surface de la

Lune, les 4 étoiles (satellites) autour de Jupiter, Saturne au triple corps (les anneaux), les phases de

Vénus, et résolut la Voie Lactée en étoiles.

Il fut un des précurseurs de la mécanique classique (celle de Newton), introduisant l'usage des

mathématiques pour l'explication des lois de la physique. Il établit la loi de la chute des corps dans le vide,

et donna une première formulation du principe de relativité. Il défendit ardemment les thèses

héliocentriques de Copernic. Contraire aux Saintes Ecritures, le livre écrit sur le sujet fut interdit et les

exemplaires saisis et brûlés.

A 70 ans (en 1634), jugé par l'église catholique, il fut accusé d'hérésie et dut prononcer un serment

d'abjuration pour ne pas être condamné à mort sur le bûcher. L'Église l'a réhabilité seulement en 1992.

Table des matières

AVANT²PROPOS ................................................................................................................................................................................................... 2

PLAN D·ÉTUDE D·UN SYSTÈME MÉCANIQUE ............................................................................................................................................................... 7

CALCUL VECTORIEL - TORSEURS...................................................................................................................................................................... 10

I² Approche historique ........................................................................................................................................................................... 10

II² Définitions ........................................................................................................................................................................................... 10

1 ² Espace vectoriel ........................................................................................................................................................................... 10

2 - Espace vectoriel Euclidien .......................................................................................................................................................... 10

II- Espace Affine-Espace Métrique ....................................................................................................................................................... 10

1 ² Espace affine ................................................................................................................................................................................. 10

2 - Espace métrique ............................................................................................................................................................................ 11

III² Vecteurs-0RPHQP G·XQ YHŃPHXU ...................................................................................................................................................... 11

1- Introduction ...................................................................................................................................................................................... 11

2- Vecteur lié-Vecteur glissant ........................................................................................................................................................ 11

3 - Opérations sur les vecteurs ....................................................................................................................................................... 11

4- 0RPHQP G·XQ YHŃPHXU HQ XQ SRLQP............................................................................................................................................... 12

IV- Torseurs .............................................................................................................................................................................................. 13

1 - Introduction .................................................................................................................................................................................... 13

2- Application antisymétrique ......................................................................................................................................................... 13

3- Champ antisymétrique ................................................................................................................................................................. 14

4- Torseurs .......................................................................................................................................................................................... 15

CINÉMATIQUE DU SOLIDE ................................................................................................................................................................................. 20

I. Approche historique ........................................................................................................................................................................... 20

II. Espace Repère-Solide rigide ........................................................................................................................................................... 20

1- Espace repère ................................................................................................................................................................................ 20

2- GpILQLPLRQ G·XQ VROLGH ULJLGH ........................................................................................................................................................ 20

III. Notion des Champs des Vitesse et des Accélérations ............................................................................................................... 21

1-Introduction ...................................................................................................................................................................................... 21

2-FOMPS GHV YLPHVVHV G·XQ VROLGH .................................................................................................................................................. 21

3- FOMPS GHV MŃŃpOpUMPLRQV G·XQ VROLGH ....................................................................................................................................... 21

IV. Mouvements de translation-rotation-tangent ............................................................................................................................ 22

1- Mouvement de translation ........................................................................................................................................................... 22

2- 5RPMPLRQ G·XQ VROLGH MXPRXU G·XQ M[H IL[H ................................................................................................................................ 22

3- Mouvement hélicoïdal .................................................................................................................................................................. 23

4- 0RXYHPHQP JpQpUMO G·XQ VROLGH : Mouvement tangent ......................................................................................................... 23

IV- Composition des Mouvements ....................................................................................................................................................... 24

1- Dérivation vectorielle ................................................................................................................................................................... 24

2- Composition des vitesses ........................................................................................................................................................... 25

3- Composition des vecteurs rotations ....................................................................................................................................... 25

4- Composition des accélérations ................................................................................................................................................. 26

V- Cinématique des solides en contact............................................................................................................................................. 26

1- Vitesse de glissement ................................................................................................................................................................... 27

2- Roulement et pivotement ............................................................................................................................................................ 28

VI- 0RXYHPHQP SOMQ G·XQ VROLGH ............................................................................................................................................................ 28

1- Définition ......................................................................................................................................................................................... 28

2- Centre instantané de rotation (C.I.R.) ...................................................................................................................................... 29

3- Base et roulante-Étude analytique ........................................................................................................................................... 29

GÉOMÉTRIE DES MASSES ................................................................................................................................................................................. 35

I. Approche historique ...........................................................................................................................................................................35

II. Masse - Centre de Masse .................................................................................................................................................................35

1- Définition .........................................................................................................................................................................................35

2- Centre de masse ......................................................................................................................................................................... 36

3- Théorème de Guldin .................................................................................................................................................................... 36

Les méthodes pratiques de recherche de G dans le cas de corps homogènes : ............................................................... 36

4- Centre de masse de volume ou de surface homogènes présentant un axe de révolution ......................................... 38

HHHB 0RPHQP G·LQHUPLH - 2SpUMPHXU G·LQHUPLH ....................................................................................................................................... 38

1- Définitions ...................................................................................................................................................................................... 38

2- 0RPHQP G·LQHUPLH .......................................................................................................................................................................... 39

Les relations entre ces grandeurs :On peut écrire .................................................................................................................. 39

3- 2SpUMPHXU G·LQHUPLH HQ XQ SRLQP 2 ............................................................................................................................................. 40

IV- 0MPULŃH G·LQHUPLH-0MPULŃH SULQŃLSMO G·LQHUPLH............................................................................................................................... 41

1- 0MPULŃH G·LQHUPLH ............................................................................................................................................................................. 41

2- 0MPULŃH SULQŃLSMOH G·LQHUPLH ....................................................................................................................................................... 42

V- Théorème de Huygens ...................................................................................................................................................................... 43

1- 5HOMPLRQ HQPUH OHV RSpUMPHXUV G·LQHUPLH G·XQ V\VPqPH HQ GHX[ SRLQPV .............................................................................. 43

2- Théorème de Huygens .................................................................................................................................................................... 1

VI- Exemple de corps homogènes classiques ............................................................................................................................. 44

CINÉTIQUE DU SOLIDE ...................................................................................................................................................................................... 49

I. Introduction ........................................................................................................................................................................................... 49

II. Définitions des cinq quantités cinétiques ...................................................................................................................................... 49

III. Torseur Cinétique ............................................................................................................................................................................... 49

1- Quantité de Mouvement ................................................................................................................................................................ 49

2- Moment Cinétique ........................................................................................................................................................................ 50

IV. Torseur Dynamique [D] ..................................................................................................................................................................... 52

1. Quantité d'accélération (résultante dynamique) .................................................................................................................... 52

2- Moment dynamique ......................................................................................................................................................................53

3- Autres résultats ........................................................................................................................................................................... 54

V. Énergie Cinétique ................................................................................................................................................................................ 56

1- Introduction ................................................................................................................................................................................... 56

2- GHX[LqPH POpRUqPH GH .±QLJ .................................................................................................................................................. 56

DYNAMIQUE DU SOLIDE .................................................................................................................................................................................... 60

I. Approche historique............................................................................................................................................................................ 60

II. Principe Fondamental de la Dynamique - Théorèmes Généraux .............................................................................................. 60

1- Introduction ................................................................................................................................................................................... 60

2- Torseur des forces appliquées à (S) ...................................................................................................................................... 60

3- Classification des forces ............................................................................................................................................................. 61

4- Principe fondamental de la dynamique (PFD) ou axiome de la dynamique ..................................................................... 61

5- 7OpRUqPH GHV LQPHUMŃPLRQV RX POpRUqPH GH O·MŃPLRQ HP GH OM UpMŃPLRQ ............................................................................ 62

III- Changement de repère - Repère galiléen ................................................................................................................................... 63

1- Position du Problème ................................................................................................................................................................... 63

2- 7RUVHXU G\QMPLTXH G·HQPUMvQHPHQP-Torseur dynamique de Coriolis .............................................................................. 63

IV. Travail et puissance ........................................................................................................................................................................... 64

1- 3XLVVMQŃH G·XQ ŃRXSOH MSSOLTXp j XQ VROLGH ............................................................................................................................. 64

2- 3XLVVMQŃH G·XQ PRUVHXU GH IRUŃHV MSSOLTXpHV j XQ VROLGH .................................................................................................. 64

3- Puissance du torseur des forces appliquées à un système matériel (S) ...................................................................... 65

4- 7OpRUqPH GH O·pQHUJLH ŃLQpPLTXH .............................................................................................................................................. 66

LIAISONS - FORCES DE LIAISON ...................................................................................................................................................................... 70

I. Introduction ........................................................................................................................................................................................... 70

II. Liaisons-Actions de contact .............................................................................................................................................................. 70

1- Définition ......................................................................................................................................................................................... 70

2- Liaisons ........................................................................................................................................................................................... 70

3- Liaison holonome ........................................................................................................................................................................... 71

4- Action de contact ........................................................................................................................................................................... 71

III. Lois de Coulomb ................................................................................................................................................................................... 71

1- Approche historique ...................................................................................................................................................................... 71

2- Réaction normale ......................................................................................................................................................................... 72

3- Réaction tangentielle ................................................................................................................................................................... 72

4- Vitesse de rotation de pivotement-roulement ....................................................................................................................... 73

5- Puissance totale des actions de contact ................................................................................................................................ 73

H9B ([HPSOH G·MSSOLŃMPLRQ PRXYHPHQP G·XQH VSOqUH VXU XQ SOMQ LQŃOLQp..................................................................................... 74

MOUVEMENT D·UN SOLIDE AUTOUR D·UN POINT OU D·UN AXE FIXES ................................................................................................................ 79

I- Approche historique ............................................................................................................................................................................ 79

II- 5RPMPLRQ G·XQ 6ROLGH MXPRXU G·XQ 3RLQP )L[H $QJOHV G·(XOHU .................................................................................................... 79

1- $QJOHV G·(8I(5 ............................................................................................................................................................................... 79

2- Moment cinétique en O du solide : ........................................................................................................................................... 80

3- Moment dynamique en O: ........................................................................................................................................................... 80

4- Énergie cinétique: ........................................................................................................................................................................ 80

III- Exemple de la toupie symétrique sur sa pointe fixe O ............................................................................................................... 81

9HB 6ROLGH PRNLOH MXPRXU G·XQ M[H IL[H ........................................................................................................................................... 84

1. Exemple ............................................................................................................................................................................................ 84

2. Énergie cinétique .......................................................................................................................................................................... 85

3. Mouvement du centre de gravité ............................................................................................................................................. 85

BIBLIOGRAPHIE ................................................................................................................................................................................................ 87

Mécanique des systèmes de solides indéformables

M.BOURICH 7

PLAN D·ÉTUDE D·UN SYSTÈME MÉCANIQUE Définir le système mécanique étudié : (S)

Étude cinématique :

vecteurs rotation vecteurs vitesses veteurs accélérations "B

Géométrie de masse :

masse

ŃHQPUH GH PMVVH G·LQHUPLH

PMPULŃH G·LQHUPLH ""

Étude cinétique :

déterminer les torseurs des actions mécaniques extérieures agissant sur (S) et les ramener en des points judicieusement choisis

Étude dynamique :

application des théorèmes généraux au système (S)

5pVROXPLRQ GH V\VPqPH GLIIpUHQPLHO SRXU O·RNPHQPLRQ GHV

équations du mouvement de (S)

Mécanique des systèmes de solides indéformables

M.BOURICH 8

1

Chapitre

Calcul Vectoriel-Torseurs

Mécanique des systèmes de solides indéformables

M.BOURICH 9

Objectifs :

Définir un torseur (torsur symétrique et anti-symétrique, invariants scalaires) ;

Décomposer un torseur (couple et glisseur) ;

Comprendre la notion de torseur équiprojectif ; Décrire OHV pOHPHQPV GH UpGXŃPLRQ G·XQ PRUVHXU ;

Déterminer l·M[H ŃHQPUMOB

Galilée : (1564-1642)

La philosophie est écrite dans ce grand livre, l'univers, qui ne cesse pas d'être ouvert devant nos yeux. Mais ce livre ne peut se lire si on ne comprends pas le langage et on ne connaît pas les caractères avec lesquels il est écrit. Or, la langue est celle des mathématiques, et les caractères sont triangles, cercles et d'autres figures géométriques. Si on ne les connaît pas, c'est humainement impossible d'en comprendre même pas un seul mot. Sans eux, on ne peut qu'aller à la dérive dans un labyrinthe obscur et inextricable". G. Galilei, "Il Saggiatore",

Rome, 1623

Mécanique des systèmes de solides indéformables

M.BOURICH 10

CALCUL VECTORIEL - TORSEURS

I² Approche historique

Pour les problèmes de physique, l'Allemand Hermann Grassman (1809-

premiers à utiliser la notation vectorielle. L'Américain Gibbs (1839-1903) et l'Anglais Heaviside

(1850-1925), disciples de Hamilton (l'un des premiers à utiliser la notion de vecteur), donnent au

calcul vectoriel sa forme quasi définitive.quotesdbs_dbs26.pdfusesText_32
[PDF] le genisse

[PDF] la chevre et la brebis en societe avec le lion.

[PDF] fables critique société

[PDF] le corbeau et le renard fle

[PDF] le corbeau et le renard questions de comprehension

[PDF] le vieux chat et la jeune souris analyse

[PDF] le lièvre et la tortue exploitation pédagogique maternelle

[PDF] la cigale et la fourmi esope analyse

[PDF] poesie la cigale et les fourmis

[PDF] la cigale et la fourmi la fontaine

[PDF] la cigale et la fourmi phedre

[PDF] on était en hiver et les fourmis

[PDF] la cigale et la fourmi anouilh

[PDF] la cigale et la fourmi esope grec

[PDF] formule mecanique generale