[PDF] LESSON 6: TRIGONOMETRIC IDENTITIES





Previous PDF Next PDF



Supplementary Trigonometry Exercise Problems

Find the value of the indicated trigonometric function of the angle ? in the figure. 18) A pendulum swings though an angle of 30° each second.



LESSON 6: TRIGONOMETRIC IDENTITIES

lesson contains several examples and exercises to demonstrate this type of procedure. which suggest the second Pythagorean identity tan2 t + 1 = sec2 t.



OER Math 1060 – Trigonometry

Angles and Their Measure. 1.1 Exercises. In Exercises 1 – 4 convert the angles into the DMS system. Round each of your answers to the nearest second.



Trigonometry

Using this method limits us to finding trig function values for angles that are accessible on the unit circle plus who wants to memorize it!!! Second Way: If 



College Trigonometry

Jul 4 2013 nearest second. 1. 63.75?. 2. 200.325?. 3. ?317.06?. 4. 179.999?. In Exercises 5 - 8



INVERSE TRIGONOMETRIC FUNCTIONS

Since trigonometric functions have no restrictions there is no inverse. • With that in mind





Section 2.3 – Solving Right Triangle Trigonometry

From a second second person standing 33.0 feet farther from the ... Solution. Section 2.3 – Solving Right Triangle Trigonometry. Exercise.



10.4 Trigonometric Identities

The remaining four circular functions can be expressed in terms of cos(?) and sin(?) so the proofs of their Even / Odd Identities are left as exercises.



Exercises and Problems in Calculus John M. Erdman

A second straight road passes through Allentown and intersects the first road ponential functions trigonometric and inverse trigonometric functions



Trigonométrie : exercices de maths en 2de à télécharger en PDF

Trigonométrie et des exercices de maths en 2de en PDF en utilisant les formules de trigonométrie avec le cosinus sinus et tangente



[PDF] trigonometrie exercices corriges

TRIGONOMETRIE - EXERCICES CORRIGES Trigonométrie rectangle Exercice n°1 Compléter les égalités en respectant bien les notations de l'énoncé cos ABC =



[PDF] Trigonométrie dans le cercle - Lycée dAdultes

6 sept 2014 · EXERCICE 8 Exprimer à l'aide de sin x et cos x les expressions suivantes : a) sin(-x) + cos(-x) b) sin(-x) - sin(7 + x)



[PDF] TRIGONOMÉTRIE (II) CORRECTION DES EXERCICES

TRIGONOMÉTRIE (II) CORRECTION DES EXERCICES ÉQUATIONS ET INÉQUATIONS TRIGONOMÉTRIQUES Exercice 1 : Résolvons l'équation cos(x) = ?



[PDF] Exercices corrigés sur le cercle trigonométrique - AlloSchool

Cercle trigonométrique - Classe de 2nde Corrigé de l'exercice 1 ?1 Convertir les cinq mesures suivantes en radians : 222? 124? 286? 24?et 99?



[PDF] TD Trigonométrie - 2nde

TD Trigonométrie - 2nde Exercice 1 Soit ABC un triangle équilatéral dont la mesure des côtés vaut x On note I le milieu du segment



[PDF] Exercices de trigonométrie - 2

Exercices de trigonométrie - 2 ( Trigonométrie du triangle rectangle et non rectangle ) 1) On veut mesurer (sans altimètre) l'altitude d'une montagne 



[PDF] Cosinus sinus et tangente dun angle aigu - Meilleur En Maths

Fiche exercices EXERCICE 1 ABC est un triangle rectangle en A AC=4cm AB=3cm Donner une valeur approchée de la mesure des angles ABCet



[PDF] [PDF] Unité I Trigonométrie

Les exercices suivants contiennent des questions dont la complexité varie Quelques uns sont des projets simples Il se pourrait que certains élèves ne 



Exercices CORRIGES de trigonométrie (ancien programme avec les

Exercices CORRIGES de trigonométrie (ancien programme avec les radians) - Site de maths du lycee La Merci (Montpellier) en Seconde ! ; Chap 09 - 1A - Conversion 

  • Comment comprendre la Trigo ?

    Dessine un cercle trigo complet en 3 étapes simples :
    N'oublie pas de mettre les valeurs x=1 et y=1 Trace les demi-droites correspondantes aux 3 angles. Pour ?/4, c'est la moitié de l'angle droit, facile. Ensuite ?/6 c'est un tiers de l'angle droit, donc c'est l'angle plus petit que ?/4.
  • Comment résoudre des équations trigonométriques ?

    Il y a plusieurs choses à faire lorsqu'on résout une équation trigonométrique :

    1Utiliser les définitions des rapports trigonométriques (sinus et cosinus).2Poser les restrictions, si nécessaire.3Déduire la ou les solutions en lien avec le cercle trigonométrique. 4Donner la solution générale gr? à la période.
  • Quelles sont les formules de trigonométrie ?

    Formules fondamentales :

    sin² x + cos² x = 1.tg x . cotg x = 1.tg x = sin x / cos x.cotg x = cos x / sin x.1 + tg² x = 1 / cos² x.1 + cotg² x = 1 / sin² x.sec x = 1/cos x.cosec x = 1/sin x.
  • On définit le cosinus comme étant le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
LESSON 6: TRIGONOMETRIC IDENTITIES

1. Introduction

Anidentityis an equality relationship between two mathematical expressions. For example, in basic algebra students are expected to master variousalgbriac factoring identitiessuch as a 2 -b 2 =(a-b)(a+b)or a 3 +b 3 =(a+b)(a 2 -ab+b 2 Identities such as these are used to simplifly algebriac expressions and to solve alge- briac equations. For example, using the third identity above, the expression a 3 +b 3 a+bsimpliflies toa 2 -ab+b 2 :The rst identiy veries that the equation (a 2 -b 2 )=0is true precisely whena=b:The formulas or trigonometric identities introduced in this lesson constitute an integral part of the study and applications of trigonometry. Such identities can be used to simplifly complicated trigonometric expressions. This lesson contains several examples and exercises to demonstrate this type of procedure. Trigonometric identities can also used solve trigonometric equations. Equations of this type are introduced in this lesson and examined in more detail inLesson 7. For student's convenience, the identities presented in this lesson are sumarized in

Appendix A

2. The Elementary Identities

Let (x;y) be the point on the unit circle centered at (0;0) that determines the angle trad:Recall that the denitions of the trigonometric functions for this angle are sint=ytant= y x sect= 1 y cost=xcott= x y csct= 1 x These denitions readily establish the rst of theelementaryorfundamental identitiesgiven in the table below. For obvious reasons these are often referred to as thereciprocalandquotientidentities. These and other identities presented in this section were introduced in Lesson 2 Sections2and3. sint= 1 csct cost= 1 sect tant= 1 cott sint cost csct= 1 sint sect= 1 cost cott= 1 tant cost sint

Table 6.1: Reciprocal and Quotient Identities.

4

Section 2: The Elementary Identities 5

Example 1Use the reciprocal andquotient formulas to verify sectcott= csct:

Solution: Sincesect=

1 cost andcott= cost sint we have sectcott=1 costcostsint=1sint= csct: Example 2Use the reciprocal andquotient formulas to verify sintcott= cost:

Solution: We have

sintcott= sintcost sint= cost:

Section 2: The Elementary Identities 6

x y ),(yx t t ),(yx- Several fundamental identities follow from the sym- metry of the unit circle centered at (0;0). As indicated in the gure, if (x;y) is the point on this circle that determines the angletrad;then (x;-y) is the point that determines the angle (-t)rad:This suggests that sin(-t)=-y=-sintand cos(-t)=x= cost. Such functions are calledoddandevenrespectively 1 . Sim- ilar reasoning veries that the tangent, cotangent, and secant functions are odd while the cosecant function is even. For example, tan(-t)=-y x=-yx= tant:Identi- ties of this type, often called thesymmetry identities, are listed in the following table. 1 A functionfisoddiff(-x)=-f(x) andeven iff(-x)=f(x) for allxin its domain. (See section 2insection 5for more information about these two properties of functions.

Section 2: The Elementary Identities 7

sin(-t)=-sintcos(-t) = costtan(-t)=-tant csc(-t)=-csctsec(-t) = sectcot(-t)=-cott

Table 6.2: The Symmetry Identities.

The next example illustrates an alternate method of proving that the tangent function is odd: Example 3Using the symmetry identities for the sine and cosine functions verify the symmetry identitytan(-t)=-tant:

Solution: Armed with theTable 6.1we have

tan(-t)=sin(-t) cos(-t)=-sintcost=-tant: This strategy can be used to establish other symmetry identities as illustrated in the following example and inExercise 1.) Example 4The symmetry identity for the tangent function provides an easy method for verifying the symmetry identity for the cotnagent function. Indeed, cot(-t)=1 tan(-t)=1-tant=-1tant=-cott:

Section 2: The Elementary Identities 8

The last of the elementary identities covered in this lesson are thePythagorean identities 2 given inTable 6.3.Again let (x;y) be the point on the unit circle with center (0;0) that determines the angletrad. Replacingxandyby costand sintrespectively in the equationx 2 +y 2 = 1 of the unit circle yields the identity 3 sin 2 t+ cos 2 t= 1. This is the rst of the Pythagorean identities. Dividing this last equality through by cos 2 tgives sin 2 t cos 2 t+cos 2 t cos 2 t=1cos 2 t which suggest the second Pythagorean identity tan 2 t+ 1 = sec 2 t. The proof of the last identity is left to the reader. (SeeExercise 2.) sin 2 t+ cos 2 t=1tan 2 t+ 1 = sec 2 t1 + cot 2 t= csc 2 t

Table 6.3: Pythagorean Identities.

2 These identities are so named because angles formed using the unit circle also describe a right tri- angle with hypotenuse 1 and sides of lengthxandy:These identities are an immediate consequence of the Pythagorean Theorem. 3

The expression sin

2 tis used to represent (sint) 2 and should not be confused with the quantity sint 2

Section 2: The Elementary Identities 9

The successful use of trigonometry often requires the simplication of complicated trigonometric expressions. As illustrated in the next example, this is frequently done by applying trigonometric identities and algebraic techniques. Example 5Verify the following identity and indicate where the equality is valid: cos 2 t

1-sint= 1 + sint:

Solution:By rst using the Pythagorean identitysin

2 t+ cos 2 t=1and then the factorization1-sin 2 t= (1+sint)(1-sint);the following sequence of equalities can be established: cos 2 t

1-sint=1-sin

2 t

1-sint=(1 + sint)(1-sint)1-sint= 1 + sint;1-sint6=0:

As indicated, the formula is valid as long as1-sint6=0orsint6=1. Sincesint=1 only whent= 2 +2kwherekdenotes any integer, the identity is valid on the set <-ft:t=

2+2kwherekis an integerg:

Section 2: The Elementary Identities 10

The process of using trigonometric identities to convert a complex expression to a simpler one is an intuitive mathematical strategy for most people. Sometimes, however, problems are solved by initially replacing a simple expression with a more complicated one. For example, in some applications the expression 1+sintis replaced by the more complex quantity cos 2 t

1-sint. This essentially involves redoing the steps

inExample 5in reverse order as indicated in the following calculations:

1 + sint=(1 + sint)(1-sint)

1-sint=1-sin

2 t

1-sint=cos

2 t

1-sint:

In particular, the rst step would be to multiply 1 + sintby the fraction1-sint

1-sint

(which has value one as long as 1-sint6= 0) to obtain the quantity(1 + sint)(1-sint)

1-sint:

The reader is advised to review the calculatons above while keeping in mind the in- sights required to perform the steps. The strategy of replacing seemingly simple expressions by more sophisticated ones is a rather unnatural and confusing process. However, with practice the strategy can be mastered and understood. The next example further illustrates this type of problem.

Section 2: The Elementary Identities 11

Example 6Determine the values oftsuch that2sint+ cos 2 t=2: Solution: Equations such as these are usually solved by rewriting the expression in terms of one trigonometric function. In this case it is reasonable to use the rst identity inTable 6.3to changecos 2 tto the more complicated expression1-sin 2 t: This will produce the following equation involving only the sine function:

2sint+1-sin

2 t=2: This last equation should remind the reader of the corresponding quadratic equation

2x+1-x

2 =2which can be solved by factoring. That is what we will do here. First, subtract2from both sides of the above equation and then multiply through by(-1)to obtainsin 2 t-2sint+1=0:Factoring this expression yields (sint-1) 2 =0: The only solution to this last expression is given bysint=1ort= 2 +2kwherek is any integer.

3. The sum and dierence formulas

This section begins with the verication of thedierence formulafor the cosine function: cos(-) = coscos+ sinsin where-denotes the measure of the dierence of the two anglesand:Once this identity is established it can be used to easily derive other important identities. The verication of this formula is somewhat complicated. Perhaps the most dicult part of the proof is the complexity of the notation. A drawing (Figure 6.1)should provide insight and assist the reader overcome this obstacle. Before presenting the argument, two points should be reviewed. First, recall the formula for the distance between two points in the plane. Specically, if (a;b) and (c;d) are planer points, then the distance between them is given byp (a-c) 2 +(b-d) 2 :(1) Second, the argument given below conveniently assumes that 0<-<2. The assumption that-<2is justied because complete wrappings of angles (integer multiples of 2) can be ignored since the cosine function has period 2:The assump- tion that the angle-is positive is justied because theSymmetry Identities guarantee that cos(-) = cos(-):We can now derive the formula.

Section 3: The sum and dierence formulas 13

xy a ba-b (x 1 ,y 1 (x 2 ,y 2 xy a-b(w, z) ab Figure 6.1: Dierences of angles.First, observe that the angle -appears inFigure 6.1(a) and (b)and is in standard position inFigure 6.1b. This angle deter- mines achordor line segment in each drawing (not shown), one con- necting (x 1 ;y 1 )to(x 2 ;y 2 ) (inFig- ure 6.1a) and one connecting (w;z) to (1;0) (inFigure 6.1b). These chords have the same length since they subtend angles of equal mea- sure on circles of equal radii. (See

Lesson 3 Section 6.) This observa-

tion and the distance formula (Equation 1) permit the equalityp (x 2 -x 1 2 +(y 2 -y 1 2 =p(w-1)quotesdbs_dbs29.pdfusesText_35
[PDF] valeurs remarquables trigonométrie

[PDF] valeur remarquable tangente

[PDF] valeurs remarquables trigonométrie démonstration

[PDF] valeurs remarquables arctan

[PDF] droite remarquable d'un triangle

[PDF] équation d'un cercle dans un repère orthonormé

[PDF] propriétés de 2 cercles sécants

[PDF] propriété fonction tangente

[PDF] chevalier du moyen age celebre

[PDF] seigneur qui reçoit l'hommage d'un autre seigneur

[PDF] cérémonie d'hommage moyen age

[PDF] cérémonie de l'hommage moyen age

[PDF] féodalité moyen age cm1

[PDF] territoire donné par un seigneur ? son vassal

[PDF] comment fonctionne le systeme feodal