[PDF] Chapitre 1 : 2D Courbes Paramétrées et coordonnées polaires





Previous PDF Next PDF



Chapitre 3 : Équation du cercle dans le plan

Exercice 3.16: Déterminer l'équation d'un cercle tangent à Ox et passant par. A(-2 ; 1) et B(5 ; 8). Exercice 3.17: Déterminer les équations des cercles 



GÉOMÉTRIE REPÉRÉE

Le point H projeté orthogonal de A sur la droite d



Chapitre8 : Cercles et sphères

D) Équation cartésienne. Soit ? un repère orthonormé du plan ?. Un point M(x y) appartient au cercle C de centre ?(x0



Polycopié dexercices et examens résolus: Mécanique du point

On se place dans l'espace muni d'un repère orthonormée. Pour trouver le rayon du cercle on peut calculer la distance AM(0) par exemple.



Chapitre 1 : 2D Courbes Paramétrées et coordonnées polaires

forme un repère orthonormé direct local que l'on appelle base comobile. L'équation est celle d'un cercle de centre (1



Dans un repère (orlj)

y) est un point du cercle.



11 : DROITES ET CERCLES DANS UN REPÈRE : exercices - page 1

1 ) On considère la droite d1 d'équation x?7=0 . Donner les coordonnées d'un point A n'appartenant pas à d1 dont le projeté orthogonal de A sur d1 est le point 



APPLICATIONS DU PRODUIT SCALAIRE

Equation de droite et équation de cercle. On se place dans un repère orthonormé O;i Une équation cartésienne du cercle C est alors : x ? 4.



Dans un repère orthonormal le cercle C a pour équation

le cercle C a pour équation : 2. 2. 2. 1 0 x y. x y. +. -. - + = . Déterminer son centre et son rayon. Exercice 2 : Dans un repère orthonormal (O;.



Trigonométrie circulaire

eix n'est autre que l'affixe du point M du cercle trigonométrique de coordonnées (cos(x) sin(x)) (le plan étant toujours rapporté à un repère orthonormé direct) 



[PDF] Chapitre 3 : Équation du cercle dans le plan

Chapitre 3 : Équation du cercle dans le plan § 3 1 Les deux formes d'équations de cercle • La forme “centre et rayon” Soit ? un cercle de centre C(? 



[PDF] Etude analytique du cercle - AlloSchool

Dans tout ce qui va suivre le plan ( ) est rapporté à un repère ( ); ; Oi j orthonormé I) EQUATION D'UN CERCLE Définition :Soient ? un point et un réel 



[PDF] [PDF] t°s équation cartésienne du plan - cercle - Monsieur CHAPON

Propriété : dans un repère orthonormal du plan le cercle de centre I (xI ; yI ) et de rayon R a pour équation cartésienne : (x?xI )2+( y?yI )2=R2 Remarque 



[PDF] Dans un repère orthonormal le cercle C a pour équation - BDRP

1) Démontrer que A B C D sont sur un même cercle C 2) Déterminer une équation de ce cercle C 3) Démontrer que le cercle C est tangent à la droite ( )



[PDF] Chapitre8 : Cercles et sphères - Melusine

D) Équation cartésienne Soit ? un repère orthonormé du plan ? Un point M(x y) appartient au cercle C de centre ?(x0y0) et de rayon R si et seulement 



[PDF] Nombres complexes homographies 1 Équations de droites et de

Dans ce problème on considère le plan affine euclidien P muni d'un repère orthonormé (0 i j) 1 Équations de droites et de cercles dans C



[PDF] Chapitre 13 - Equation cartésienne de droites et de cercles

13 1 2 Vecteur normal et équation de droite Dans un repère orthonormé il est possible de retrouver des équations cartésiennes de droites à



[PDF] Équation de cercle :

Dans un repère orthonormé ( ); ; Oi j ? ? du plan on considère l'ensemble ? d'équation : x2 + y2 - 2x -10y +17 = 0 Démontrer que l'ensemble ? est un cercle 



[PDF] 11 : DROITES ET CERCLES DANS UN REPÈRE : exercices - page 1

Le plan est muni d'un repère orthonormé (O;?i ?j ) Droites 3 ) Donner un vecteur normal à la droite d'équation 2 x?5 y+3=0



[PDF] GÉOMÉTRIE REPÉRÉE - maths et tiques

Dans tout le chapitre on se place dans un repère orthonormé ( ; ? ?) du Méthode : Déterminer une équation de droite à partir d'un point et d'un 

:
Chapitre 1 : 2D Courbes Paramétrées et coordonnées polaires

Chapitre 1 : 2D

Courbes Paramétrées et coordonnées polaires

Partie 2 : Courbes polaires

Un système de coordonnées représente un point du plan par un couple de nombres (réels en général) appelés coordonnées.

Systèmes de coordonnées dans un plan

Habituellement, on utilise des

coordonnées cartésiennes qui correspondent à des projections sur des axes perpendiculaires.

On peut également utiliser un système de

coordonnées introduit par Newton, appelé système de coordonnées polaires.

Pole et axe polaire

origine). Ontraceunrayon(demi-droite) partant deO, on l'appelle adže polaire. Cet axe est généralement tracé horizontalement vers la droite et correspond ă l'adže des abscisses (x) en coordonnées

Cartésiennes.

O poleaxe polaire

Coordonnées polaires

SiPestunpoint duplan(тO), soient :

ƒrladistance deO àP.

radians) entrel'adže polaireetlaligne OP.

SiP =O, alorsr =0, onconvient que

(0, ș) representelepole pourtoute valeurdeș.

P estreprésentéparlecouple(r,ș).

r,șsontappeléscoordonnées polairesdeP. On étend la définition des coordonnées polaires(r,ș)au cas oùrest On convientque les points (-r,ș)et(r,ș)sont sur la même droite (radiale) passant par Oet à lamêmedistance | r | deO,maissur les côtés opposéspar rapport àO. Sir> 0, le point(r, ș) se trouve dansle mêmequadrant queș. Sir< 0,ilse trouvedansle quadrant situé du côtéopposépar rapport au pole.

Notonsque(r, ș)

représentele même point que(r, ș+ ʌ).

Coordonnées polaires

Exercice

Tracerlespoints de coordonnéespolaires:

a.(1, 5ʌ/4) b.(2, 3ʌ) c.(2, 2ʌ/3) d.(3, 3ʌ/4)

Solution

Le point (1, 5ʌ/4) :

Le point (2, 3ʌ):

Le point (2, 2ʌ/3) :

Le point (3, 3ʌ/4) :

ƒIl estsituédansle 4èmequadrant.

ƒangle 3ʌ/4 estdansle secondquadrant

etrestnégatif.

CARTÉSIENNES ET POLAIRES

En coordonnéesCartésiennes,chaquepointaune

représentationunique. Alorsque, encoordonnéespolaires,chaquepointa une infinité dereprésentations. Par exemple, le point (1, 5ʌ/4) deexercice précédentpeut : (1, 3ʌ/4), (1, 13ʌ/4), or(1, ʌ/4). Unpointde coordonnéespolaires(r, ș) (r, ș+ 2nʌ) et(-r, ș+ (2n + 1)ʌ)oùnestunentierrelatif quelconque. Lepassage descoordonnées polairesauxCartésiennes

ƒLe pole correspond àorigine.

ƒpolairecoincide avecdes abscisses positives.

Sile point P a pour coordonnées

polaires (r, ș), sescoordonnées

Cartésiennes(x, y) sont :

cos sin xr yr T

CARTÉSIENNES ET POLAIRES

Pour trouverretșquandx etysont connus,onutilise les

équations:

ƒElle sont déduitesdeséquations

précédentesousimplement"lues» sur lafigure.

2 2 2tanyr x yx

CARTÉSIENNES ET POLAIRES

Exercices

1.Convertirles coordonnées polaires dupoint (2, ʌ/3) en

coordonnées Cartésiennes.

2.Représenterle point decoordonnées Cartésiennes(1, 1)

en termes de coordonnéespolaires.

Solution 1

ƒPuisquer= 2etș= ʌ/3,

ƒDonc,le point est(1, ) en coordonnées Cartésiennes.1cos 2cos 2 132

3sin 2sin 2. 332

xr yr T ST 3

Solution 2

Sionchoisitr> 0:

Commele point (1, 1) se trouve dansle 4èmequadrant, onpeutchoisirș= ʌ/4ouș= 7ʌ/4.

Aussi,uneréponsepossible est: ( , ʌ/4)

Uneautreréponsepossible est: ( ,7ʌ/4)

2 2 2 21 ( 1) 2

tan 1 r x y y x 22

Base comobile

Le vecteur position du point M dans R: OMest souvent noté r, on noteurle vecteur unitaire de même direction: r= rur= r (cosux+ sinuy), uvecteur unitaire orthogonal à ur(sens direct). (M, ur, u) forme un repère orthonormé direct comobile. u= cos(+/2) ux+ sin(+/2) uy= -sinux+ cosuy On voit facilement, en dérivant les coordonnées de uret upar rapport à que : O

Repère O, et de base

orthonormée directe (ux, uy). Le point Oest le pole et O,ux coordonnées polaires.

Les coordonnées cartésiennes xet yen

fonction des coordonnées polaires ret ș:

Courbespolaires

r= f(ș) [ou, plus généralement,

F(r, ș

moins une représentation polaire (r, ș), dont les coordonnées r =2 ?

ƒcette courbe est constituée de tous les

points (r, ș) avec r = 2.

ƒr représente la distance du point

au pole.

Donc, la courbe r = 2 est le cercle de

centre O et rayon 2.

En général, équation r = areprésente

un cercle de centre O et rayon |a|.

Exercice

Tracer la courbe polaire ș= 1.

Solution

ƒCettecourbe est constituéedetous lespoints (r, ș) tells que polaireșsoit1 radian. ƒladroitepassantparO et faisantun angle de1radian avec polaire.

Notonsque :

Lespoints (r, 1) de

cettedroiteavecr> 0 sont dansle 1erquadrant.

Les points (r, 1) avec r< 0 sont

dansle 3èmequadrant.

Exercice

a.Tracerlacourbe polairer= 2 cos ș. b.Trouver une équationCartésiennedecettecourbe.

Solution :

Pour commencer,nousindiquonslesvaleurs derpour certaines valeurs deș.

On traceles pointscorrespondantpour (r, ș).

Puis, on jointcespoints pourtracerla

courbecommesuit.

La courberessembleà un cercle.

On a seulementutilisé les valeurs deșcomprises entre0 et ʌsionlaisseșcroître au-delà deʌ, onretrouvelesmêmes points.

La courbesembleêtreun cercle.

Pourconvertirpolaire enCartésienne, onutilise:

ƒx= rcos ș,donccos ș= x/r.

ƒquation r= 2 cos șdevientr= 2x/r.

ƒCe qui donne: 2x =r2= x2+ y2oux2+ y2 2x= 0

En complétantlecarré, onobtiend: (x 1)2+y2=1

ƒestcellecercle decentre(1, 0) et derayon1.

La figure montre que le cercle a

quationr =2 cosș.

ƒangle OPQestun angle

droit, doncr/2 =cos ș.

Symétrie

Quandontrace une courbepolaire, ilest

quelquefoiscommode de tirer parti des symétries.

Sipolaireestinvariante

lorsqueșestremplacéparș, lacourbe estsymétriquepar rapportpolaire.

Lacourbeprécedentestsymétriquepar

polaire, puisquecos(ș)=cos ș. Cette propriété desymétrieaurait pu êtreutiliséepour tracerlacourbe. On a juste besoin de placer les points pour0 șʌ/2 et ensuite de faire une réflexion polaire pourobtenirle cerclecomplet.

Autressymétries

Siéquation estinvariantelorsquerest

remplacéparr, ou quandșestremplacé parș+ ʌ, lacourbe estsymétriquepar rapportaupole.

Ceci veut dire que lacourbe estinvariante

parrotationorigine.

Siéquation estinvariantequandșest

remplacéparʌș, lacourbe est symétriquepar rapport à laverticaleș= ʌ/2.

Exemple : parabole

Comme sinș= sin(ʌș), lacourbe estsymétriquepar rapport à la verticaleș= ʌ/2. Les valeursprisespar rsont:

Cecicorrespond à la courbetracéeau dessus

(paraboleverticale).

On le vérifieenpassant à cartésienne.

O r 01 /2 1

3/21/2

r(1 sin) =1, donc : r=1 + rsin En élevant au carré on a : r2=(1 + rsinsoit : x2+ y2= (1 + y) Après développement : x2+ y2=1 +2y+ yon voit que : x2=1 +2y= 2(1/2 + y) y sommet Sde la parabole. Si on note Y= y

Y= x2/2

Onretrouvedelaparabole.

S

Exercice

quotesdbs_dbs29.pdfusesText_35
[PDF] propriétés de 2 cercles sécants

[PDF] propriété fonction tangente

[PDF] chevalier du moyen age celebre

[PDF] seigneur qui reçoit l'hommage d'un autre seigneur

[PDF] cérémonie d'hommage moyen age

[PDF] cérémonie de l'hommage moyen age

[PDF] féodalité moyen age cm1

[PDF] territoire donné par un seigneur ? son vassal

[PDF] comment fonctionne le systeme feodal

[PDF] suzerain

[PDF] maniere de s'adresser a un seigneur

[PDF] cérémonie de l'adoubement

[PDF] ordo du sacre 1250

[PDF] les objets du sacre des rois de france

[PDF] ordonnance du sacre de 1250