[PDF] Chapitre 3 - Espaces métriques compacts





Previous PDF Next PDF



Chapitre 3 - Espaces métriques compacts

Cette caractérisation sert `a la définition d'un espace compact dans le cadre topologique (sans être nécessairement métrique).



12 Compact sets Definition 12.1. A set S?R is called compact if

Math 320 - November 06 2020. 12 Compact sets. Definition 12.1. A set S?R is called compact if every sequence in S has a subsequence that converges to.



Théorie des Opérateurs1

Si A ? L (H) et B ? K (H) alors AB et BA sont compacts. Définition 4.3 Un opérateur T ? L (H) est dit de rang ni si Im T est de dimension finie; 



Chapitre 5 Opérateurs compacts

Définition 5.1.1 Soient E et F deux espaces de Banach ; une application Remarque 5.1.1 Il est clair que tout opérateur T de rang fini est compact : en.



Chapter 3 Les espaces L

2 mai 2011 3.1 Définition inégalités de Hölder et de Minkowski ... Même si ? est un espace topologique compact



Amphi 2: Suites - Compacité - Connexité

Remise en forme mathématique 2013 Définition. La suite (xn)n?N ... Définition. X est compact si de tout recouvrement de X par des ouverts on.



Cours de Topologie L3-math

Cours de Topologie L3-math 2.1.1 Définition d'une distance exemples et contre-exemples . ... 4.2.2 Caractérisation séquentielle d'un compact.



Chapitre 4 Compacité

Définition 4.1.5. Une partie A d'un espace topologique est quasi-compacte si et seule- ment si tout recouvrement ouvert de A admet un sous-recouvrement 



Université Lyon I M1. Groupes classiques et Géométrie

Définition. Un espace est dit localement compact s'il est séparé et si tout point de cet espace poss`ede un voisinage ouvert `a clôture compacte 



Analyse Fonctionnelle

6.4 Décomposition spectrale des opérateurs autoadjoints compacts . Définition 1.1 Soit E un espace vectoriel sur K. Une norme sur E est une application.



[PDF] Espaces métriques compacts

Définition 3 1 1 On dit qe (Ed) est un espace métrique compact si toute suite d'éléments de (Ed) admet une suite extraite convergeant vers un point de E Une 



[PDF] Chapitre 4 Compacité

Définition 4 1 3 Une partie A d'un espace métrique est compacte si et seulement si tout recouvrement ouvert de A admet un sous-recouvrement fini



[PDF] Cours 2 : compacité complétude connexité - Bertrand RÉMY

Par définition de ·? un ensemble X est borné s'il est inclus dans un pavé [?aa]N qui est compact Si de plus X est fermé c'est un fermé dans un compact 



[PDF] MAT311 Cours 2 : Compacité complétude connexité 1

Par définition de ·? un ensemble X est borné s'il est inclus dans un pavé [?aa]N qui est compact Si de plus X est fermé c'est un fermé dans un compact 



[PDF] Compacité - Licence de mathématiques Lyon 1

Définition 3 1 Soit (X d) un espace métrique On dit que (X d) est compact s'il a la propriété suivante : pour toute suite (xn) d'éléments de X 



[PDF] I - Définition et premières propriétés - Agreg-mathsfr

[2] • Une réunion finie de parties compactes est compacte • Une intersection de compacts est compacte 2 - Bolzano-Weierstrass Théo 7 [2](Bolzano 



[PDF] Espaces topologiques compacts

Définition On dira que (X ) est un espace topologique compact si il vérifie: – (X ) est séparé – De tout recouvrement ouvert de X on peut extraire un 



Compacité (mathématiques) - Wikipédia

Axiome de Borel-Lebesgue et définition générale des compactsModifier de E est dite (quasi-)compacte si K muni de la topologie induite est (quasi-)compact



[PDF] Compacité - Unemainlavelautre

Espace topologique compact Définition 1 Un espace topologique séparé (EO) est dit compact si et seulement si de tout re-

Définition 3.1.1 On dit qe (E,d) est un espace métrique compact si toute suite d'éléments de (E,d) admet une suite extraite convergeant vers un point de E. Une  Autres questions
  • Qu'est-ce qu'un compact en math ?

    Un espace topologique séparé est compact si et seulement si toute suite généralisée poss? au moins une valeur d'adhérence, autrement dit une sous-suite généralisée convergente. Cette définition équivalente est rarement utilisée. Elle est particulièrement adéquate pour prouver que tout produit de compacts est compact.
  • Qu'est-ce qu'une fonction compacte ?

    On dit que (X, d) est compact s'il a la propriété suivante : pour toute suite (xn) d'éléments de X, il existe une sous-suite (xnk ) qui converge dans X. Un exemple fondamental d'espace compact est donné par un intervalle fermé borné (un segment) de R ou, plus généralement n'importe quelle partie fermée bornée de R.
  • Qu'est-ce qu'un espace métrique compact ?

    Définition 3.1.1 On dit qe (E,d) est un espace métrique compact si toute suite d'éléments de (E,d) admet une suite extraite convergeant vers un point de E. Une partie A de E est dite compacte si le sous-espace métrique (A, d) est compact.
  • Par définition de ·?, un ensemble X est borné s'il est inclus dans un pavé [?a,a]N, qui est compact. Si de plus X est fermé, c'est un fermé dans un compact, donc il est compact.

Chapitre 3

Espaces m´etriques compacts

Tout intervalle ferm´e et born´e est un compact en ce sens que toutes ses suites ont une suite extraite convergeant dans l"intervalle. Ceci peut se voir par un proc´ed´e bien intuitif : on d´ecoupe l"intervalle en deux parts ´egales et une infinit´e de termes de la suite vont restent dans l"un des sous-intervalles obtenus; on travaille ce sous-intervalle accompagn´e de cette suite extraite et on recommence le d´ecoupage. On voit apparaˆıtre une infinit´e de termes de la

suite initiale qui vont ˆetrecoinc´esdans une s´erie de sous-intervalles emboˆıt´es :

d"o`u une sous-suite convergente. La propi´et´e d"avoir une sous-suite convergente reste valable pour toute suite born´ee. La limite de la sous-suite appartient `a l"intervalle ´etudi´e car ce dernier est ferm´e. Inversement au proc´ed´e de d´ecouper un intervalle en plusieurs sous-intervalles, la compacit´e sera aussi caract´eris´ee par une finitude dans les recouvrements par des ouverts. Cette caract´erisation sert `a la d´efinition d"un espace compact dans le cadre topologique (sans ˆetre n´ecessairement m´etrique). Un r´esultat classique affirme qu"une application continue sur un intervalle

ferm´e et born´e atteint ses extrˆema; il sera g´en´eralis´e sous la forme suivante :

toute application continue envoie un compact sur un compact.

3.1 D´efinition. Premi`eres propri´et´es

Soit (E,d) un espace m´etrique.

D´efinition 3.1.1On dit qe (E,d) est unespace m´etrique compactsi toute suite d"´el´ements de (E,d) admet une suite extraite convergeant vers un point deE. Une partieAdeEest ditecompactesi le sous-espace m´etrique (A,d) est compact. En d"autres termes, (E,d) est un espace m´etrique compact si toutes ses suites admettent au moins unevaleur d"adh´erencedansE. Th´eor`eme 3.1.2 (Propri´et´e de Bolzano-Weierstrass)Un espace m´etrique (E,d)est compact si et seulement si toute partie infinieAdeEadmet un point d"accumulation dansE, c`ad : il existea?Edont tout voisinage contient une infinit´e d"´el´ements deA. 17

18CHAPITRE 3. ESPACES M´ETRIQUES COMPACTS

Pour simplifier, on dira qu"une partieAestborn´eesi

ρ(A) := sup

x,y?Ad(x,y)<∞.

Parfois,ρ(A) est appel´ediam`etre deA.

Proposition 3.1.3SiAest une partie compacte de(E,d), AlorsAest `a la fois ferm´ee et born´ee. Pour d´emontrer cet ´enonc´e, on peut se servir du lemme qui suit. Lemme 3.1.4Les trois conditions sont ´equivalentes. (i)On aρ(A)<∞. (ii)Il existea?Atel que

ρ(a,A) := sup

x?Ad(a,x)<+∞. (iii)Pour touta?A,

ρ(a,A) := sup

x?Ad(a,x)<+∞. Exemple 3.1.5 (a)[0,1] est compact mais ni ]0,1], niRne l"est. (b)Toute partie finie d"un espace m´etrique est compacte. (c)Dans l"espace (C0([0,1];R),d∞), soitAl"ensemble desf? C0([0,1];R) telles que max tion continue de (C0([0,1];R),d∞) versR,Aest un ensemble ferm´e. Il est ´evidemment born´e, et pourtant il n"est pas compact.

3.2 Parties compactes deRn

Commen¸cons par la propri´et´e suivante : Proposition 3.2.1Soient(E,d)et(E?,d)deux espaces m´etriques et consid´erons l"espace m´etrique produit(E×E?,D), avec par exempleD((x,x?),(y,y?)) = d(x,y) +d?(x?,y?). AlorsE×E?est compact ssiEetE?sont tous compacts. En ce qui concerne l"espace euclidien de dimensionn,Rn, on a, plus pr´ecisemment : Th´eor`eme 3.2.2Une partieAdeRnest compacte ssiAest `a la fois ferm´ee et born´ee. Corollaire 3.2.3Dans un espace vectoriel norm´e de dimension finie, une par- tie est compacte ssi elle est `a la fois ferm´ee et born´ee. Pour obtenir le corollaire, il suffit de faire remarquer que tout espace vectoriel norm´e de dimensionnsur le corps des r´eels est hom´eomorphe `a l"espace euclidien R n. Le r´esultat suivant peut ˆetre vu comme "la r´eciproque" du th´eor`eme 3.2.2. Th´eor`eme 3.2.4 (Th´eor`eme de Riesz; Voir TD)Soit(E,? ?)un espace norm´e.Eest de dimension finie ssi sa boule unit´e ferm´ee¯B(0;1)est compacte. En d"autres termes, un espace vectoriel norm´e est localement compact (ie. chaque point admet un voisinage compact) ssi il est de dimension finie.

3.3. COMPACIT

´E ET RECOUVREMENTS OUVERTS19

3.3 Compacit´e et recouvrements ouverts

SoitAune partie non vide de (E,d).

D´efinition 3.3.1On appellerecouvrement ouvert deAtoute collection d"ou- verts{Ui}i?Ide (E,d) telle queA? ?i?IUi. Le recouvrement est ditfinisiI est fini. Th´eor`eme 3.3.2Un espace m´etrique(E,d)est compact ssi, de tout recouvre- ment ouvert deE, on peut extraire un sous-recouvrement fini. La preuve peut se faire `a l"aide du lemme suivant. Lemme 3.3.3 (Voir TD)Soit(Ui)i?Iun recouvrement ouvert deE. SiEest compact, alors il existeρ >0tel que, pour toutx?E, il existeix?Itel que

B(x,ρ)?Uix.

Remarque 3.3.4Dans un cadre plus ´etendu, un espace topologique est dit compacts"il est s´epar´e (au sens de Hausdorff) et si de tout son recouvrement ouvert on peut extraire un sous-recouvrement ouvert fini. Corollaire 3.3.5Une partieAde(E,d)est compacte ssi, de toute famille d"ouverts(Ui)i?IdeEtelle queA? ?i?IUi, il existe un sous-ensemble finiJ deItel queA? ?i?JUi. Corollaire 3.3.6Dans un espace m´etrique compact, si l"intersection d"une fa- mille de ferm´es est vide, alors une sous-famille finie est d"intersection vide.

3.4 Applications continues d"un espace compact

Rappelons que toute fonction num´erique continue sur un intervalle ferm´e born´e atteint ses bornes inf´erieure et sup´erieure. Cette propri´et´e implique que f([a,b]) = [m,M] lorsquef: [a,b]→Rest continue. Voici un r´esultat qui va dans le mˆeme sens. Proposition 3.4.1Sifest une application continue de(E,d)vers(F,δ), alors f(K)est compact dansFpourvu queKsoit compact dansE. Autrement dit, l"image par une application conitnue d"un compact reste un compact. Corollaire 3.4.2Toute fonction continue sur un espace m´etrique compact `a valeurs dansRest born´ee et atteint ses bornes inf´erieure et sup´erieure. Exemple 3.4.3 (Voir TD)SoientA,Bdeux partie compactes de(E,d).Aet Bsont disjoints ssid(A,B) := infx?A,y?Bd(x,y)>0. Pour voir ceci, on munit E×Ede la m´etrique produit et on notera que l"applicationd:E×E→[0,∞) est continue et queA×Best compact dansE×E. Corollaire 3.4.4La compacit´e est une notion topologique en ce sens que, si (E,d1)et(E,d2)sont topologiquement ´equivalents, alors la compacit´e par rap- port `a l"une distance entraˆıne celle par rapport `a l"autre.

20CHAPITRE 3. ESPACES M´ETRIQUES COMPACTS

Ceci d´ecoule de la proposition 3.4.1.

Le r´esultat suivant s"obtient avec la caract´erisation de la copmpacit´e en termes de sous-recouvrements ouverts finis. Th´eor`eme 3.4.5 (Heine)Soient(E,d)et(F,d?)des espaces m´etriques. On suppose queEest compact. Alors toute application continue de(E,d)vers(F,d?) est uniform´ement continue.quotesdbs_dbs44.pdfusesText_44
[PDF] conversion dpi pixel

[PDF] ensemble compact exemple

[PDF] définition compact maths

[PDF] espace fermé définition

[PDF] convertir photo en basse definition

[PDF] espace compact pdf

[PDF] lexique juridique marocain pdf

[PDF] les lois de la donation au maroc

[PDF] conversion pixel octet

[PDF] habiter un espace de faible densité

[PDF] exo7 matrice exercice

[PDF] habitude alimentaire definition

[PDF] guide de bonnes pratiques d'hygiène en pâtisserie

[PDF] propriété d archimède exercices

[PDF] partie entière inégalité