[PDF] Forme trigonométrique dun nombre complexe – Applications





Previous PDF Next PDF



Chapitre 1 - Trigonométrie et nombres complexes

2 sept. 2015 Voir les autres formules dans le formulaire. On peut également trouver des formules pour les sommes de cosinus (et/ou sinus tangente)



Forme trigonométrique dun nombre complexe – Applications

On note z = a + ib la forme algébrique du complexe z. Exemples : Donner la forme trigonométrique des complexes z1 = ?3 (cos (?.



Trigonométrie et nombres complexes

On appelle cos(?) et sin(?) les coordonnées de M. On peut définir un nombre complexe (noté avec une barre en dessous) par z=a+j.b.



Nombres complexes et trigonométrie

2.2.3 Calculs de sommes de cosinus et sinus . Si ? est un réel on note ei? le nombre complexe défini par ei? = cos ? + i sin ?. Exemples.



ÉTS

Puisque les fonctions sinus et cosinus sont périodiques un nombre complexe a + bi s'écrit sous la forme polaire générale de la façon suivante:.



Utilisation de la notation complexe pour les quantités harmoniques

1 - Représentation complexe d'une quantité harmonique. Soit un signal harmonique x(t) = A cos(?t + ?). A est l'amplitude du signal ? est sa phase (entre 0 



Trigonométrie. Nombres complexes. (notes de cours)

25 sept. 2017 2.3 Sinus et cosinus d'une somme . ... un bonne maîtrise des formules de trigonométrie et du calcul avec les nombres complexes (y.



Cours délectrocinétique - EC4-Régime sinusoïdal

complexe qui est un outil d'aide à la résolution des équations. Soit un signal sinusoïdal d'expression mathématique x(t) = Xm cos(Êt+„) on lui associe.



Chapitre13 : Fonctions hyperboliques

la fonction ch (cosinus hyperbolique). ‚ On voit tout de suite qu'elle est paire et de classe c8 sur R. MPSI Mathématiques. Analyse réelle et complexe.



Rattrapage dAnalyse Complexe

Soit E = C{?/2 + n? n ? N} et la fonction tangente complexe tan : E ? C donnée par tan(z) = sin z cos z.



[PDF] Trigonométrie et nombres complexes

2 sept 2015 · On peut également trouver des formules pour les sommes de cosinus (et/ou sinus tangente) ou pour les cosinus (et/ou sinus tangente) de sommes 



[PDF] NOMBRES COMPLEXES ET TRIGONOMÉTRIE - Christophe Bertault

On définit finalement les fonctions cosinus et sinus à partir de l'exponentielle complexe en posant pour tout x ? : cos x = Re eix = eix + e?ix



[PDF] NOMBRES COMPLEXES – Chapitre 3/4 - maths et tiques

cos( + ) = cosC ? (? )7 = cos cos(? ) + sin sin(? ) = cos cos ? sin sin - 3e formule : sin( ? ) = cos Z 2 ? ( 



[PDF] Nombres complexes et trigonométrie - Mathieu Mansuy

? Les nombres complexes sont utiles pour le calcul de sommes de cosinus on sinus car mieux vaut considérer des sommes avec exp(i?) qu'avec cos(?) ou sin(?) 



[PDF] Nombres complexes

?? ? R / z = cos(?) + isin(?) On dit que ? est un argument du nombre complexe z Remarques : R 1 Si on a un nombre complexe quelconque z non nul 



[PDF] Trigonométrie Nombres complexes (notes de cours)

25 sept 2017 · On définit les fonctions circulaires sin cos tan à l'aide du cercle trigonométrique (cercle de rayon 1 orienté dans le sens contraire des 



[PDF] Les nombres complexes

cosinus des multiples de ? Paris Descartes 2012 — 2013 Mathématiques et calcul 1 Les nombres complexes



[PDF] Première STI 2D - Nombres complexes - Forme trigonométrique

Remarque : Le module d'un nombre complexe est une distance : c'est donc un On reconnait à partir des valeurs des angles remarquables le cosinus et le



[PDF] Trigonométrie circulaire

Le cosinus est donc une ligne trigonométrique qui va avec le sinus ou encore qui est (où i est le nombre complexe tel que i2 = ?1) eix n'est autre que 



[PDF] CM11-Nombres Complexes

Complexes de module 1 Proposition (Formules d'Euler ) cos(?) = d'addition des cosinus et sinus démontrer les formules suivantes de

  • Comment calculer un angle complexe ?

    Pour mettre sous forme trigonométrique un complexe z=a+ib z = a + i b , on met en facteur le module ?a2+b2 a 2 + b 2 , puis on cherche un angle ? tel que ???cos?=a?a2+b2sin?=b?a2+b2.
  • Quel est la formule du cos ?

    cos x = (1 - tg² x/2) / (1 + tg² x/2)
  • Qu'est-ce que la forme trigonométrique ?

    Théorème – Définition : Tout nombre complexe non nul z s'écrit sous la forme suivante : z = r (cos (?) + i sin (?)) avec r = z et ? = arg (z) [2?] Cette forme est appelée forme trigonométrique du complexe z.
  • Les lignes trigonométriques pour les angles de 0°, 90°, 45°, 30° et 60° peuvent être calculés dans le cercle trigonométrique à l'aide du théorème de Pythagore. La table des cosinus est obtenue en inversant celle des sinus.

Forme trigonométrique

d"un nombre complexe - Applications

Christophe ROSSIGNOL

Année scolaire 2019/2020Table des matières

1 Représentation géométrique d"un nombre complexe

2

1.1 Rappels : affixe d"un point

2

1.2 Affixe d"un vecteur

3

2 Forme trigonométrique3

2.1 Argument d"un nombre complexe non nul

3

2.2 Forme trigonométrique d"un complexe non nul

5

2.3 Égalité de deux nombres complexes

6

2.4 Cas d"un produit ou d"un quotient

6

3 Forme exponentielle7

4 Applications géométriques des nombres complexes

7

4.1 Distances et angles orientés

7

4.2 Caractérisation des cercles et des médiatrices

8

4.3 Pour aller plus loin...

8

Table des figures

1 Interprétation géométrique

2

2 Argument d"un nombre complexe

4

3 Module et argument de l"opposé et du conjugué

4

4 Forme trigonométrique d"un nombre complexe

5

5 Triangle rectangle isocèle direct

9

6 Triangle équilatéral

9 ?

Ce cours est placé sous licence Creative Commons BY-SAhttp://creativecommons.org/licenses/by-sa/2.0/fr/

1

1 REPRÉSENTATION GÉOMÉTRIQUE D"UN NOMBRE COMPLEXE

1 Représentation géométrique d"un nombre complexe

1.1 Rappels : affixe d"un pointDéfinition :Soit(O;?u;?v)un repère orthonormé direct etzun nombre complexe de forme algébrique

z=a+ib. Le p ointM(a;b)est appeléimage de z. (voir figure1 )

On dit que Ma pouraffixe z.

La distance OMest appeléemo dulede z. On note|z|=OM.Figure1 - Interprétation géométrique Conséquences :1.L"ensem bledes nom bresréels est représen tépar l"axe des abscisses. L"ensemble des imaginaires purs est représenté par l"axe des ordonnés. 2.

On a |z|=⎷a

2+b2.

3.|z|= 0si et seulement siz= 0.Propriété :Soitz?C.

On a :

|z|2=zz

Démonstration :

On notez=a+ibla forme algébrique du complexez.

zz= (a+ib)(a-ib) =a2-(ib)2=a2+b2=|z|2Propriété :Affixe du milieu d"un segment

SoitAetBdeux points d"affixes respectiveszAetzB.

On noteIle milieu du segment[AB].

Alors, l"affixe deIest :

z

I=zA+zB2

Exercice :Démontrer cette propriété à l"aide des coordonnées du milieu d"un segment. 2

2 FORME TRIGONOMÉTRIQUE 1.2 Affixe d"un vecteur

1.2 Affixe d"un vecteur

Définition :Soit-→wun vecteur de coordonnées?a b?

On appelle

affixe de -→wle complexez=a+ib.Propriété 1 :SoientAetBdeux points d"affixes respectiveszAetzB. Alors, le vecteur--→ABa comme affixezB-zA.Démonstration : SizA=xA+iyAetzB=xB+iyB(formes algébriques), alorsA(xA;yA)etB(xB;yB).

Les coordonnées du vecteur

--→ABsont donc?xB-xA y B-yA? . Par suite, son affixe est : z= (xB-xA) +i(yB-yA) = (xB+iyB)-(xA+iyA) =zB-zA Remarques :Il découle facilement des règle de calcul sur les coordonnées de vecteurs que : 1. Deux v ecteursson tégaux si et seuleme ntsi leurs affixes son tégales 2. Si -→wet-→w?sont deux vecteurs d"affixes respectiveszetz?etkun réel : l"affixe de -→w+-→w?estz+z?; l"affixe de k-→westkz. 3.

On p eutdonc utiliser les affixes p ourdéterminer une colinéarité de v ecteurs,don cp ourd éterminer

un parallélisme ou un alignement. Exercices :66, 67, 70 page 2541- 68, 69 page 2542[TransMath]

2 Forme trigonométrique d"un nombre complexe non nul

2.1 Argument d"un nombre complexe non nulDéfinition :Soitzun nombre complexenon n ulet Mle point d"affixez(voir figure2 ).

On appelle

argumen t de ztoute mesure en radians de l"angle? ?u;--→OM? . On le notearg(z). il est défini

à2kπprès (k?Z).

On a donc :

arg(z) =? ?u;--→OM? [2π]Remarques :1.Si zest un réel, c"est-à-direz=a: si a >0,|z|=aetarg(z) = 0 si a <0,|z|=-aetarg(z) =π 2.

Si zest un imaginaire pur, c"est-à-direz=ib:

si b >0,|z|=betarg(z) =π2 si b <0,|z|=-betarg(z) =-π2 Propriété :Module et argument de l"opposé et du conjugué Soitzun complexe non nul etM1,M2,M3etM4les points d"affixes respectivesz,z,-zet-z. Par des considérations géométriques simples sur la figure 3 , on obtient : |z|=|z|=|-z|=|-z| arg(z) =-arg(z) [2π] arg(-z) =π+ arg(z) [2π] arg(-z) =π-arg(z) [2π]1. Affixe d"un point, d"un vecteur.

2. Ensembles de points

3

2.1 Argument d"un nombre complexe non nul 2 FORME TRIGONOMÉTRIQUE

Figure2 - Argument d"un nombre complexeFigure3 - Module et argument de l"opposé et du conjugué 4

2 FORME TRIGONOMÉTRIQUE 2.2 Forme trigonométrique d"un complexe non nul

Exercices :72, 73, 74 page 2543[TransMath]

2.2 Forme trigonométrique d"un complexe non nulThéorème - Définition :Tout nombre complexe non nulzs"écrit sous la forme suivante :

z=r(cos(θ) +isin(θ))avecr=|z|etθ= arg(z) [2π]

Cette forme est appelée

for metrigonométrique du complexe z.Démonstration :

On noteMle point d"affixez,r=OMetθ=?

?u;--→OM? [2π]. La demi-droite[OM)coupe le cercle trigonométrique en un pointA(voir figure4 ).

Les coordonnées deAsont(cos(θ) ; sin(θ))et, comme--→OM=r-→OA, les coordonnées deMsont

(rcos(θ) ;rsin(θ)).

L"affixe deMest donc :

z=r(cos(θ) +isin(θ))Figure4 - Forme trigonométrique d"un nombre complexe

Exercice :22 page 2444[TransMath]Lien entre forme algébrique et forme trigonométrique :Soitzun complexe non nul de forme al-

gébriquez=a+ibet de forme trigonométriquez=r(cosθ+isinθ). Alors :

Si l"on c onnaîtretθ:?

a=rcosθ b=rsinθ

Si l"on c onnaîtaetb:

r=|z|=?a

2+b2et?

cosθ=ar sinθ=br

Exemple :Soitz=⎷3-i.

r=???⎷3-i???=?? ⎷3

2+ (-1)2=⎷3 + 1 =

⎷4 = 2 cosθ=⎷3 2 sinθ=-12

On a doncarg(z) =θ=-π6

[2π]. Exercices :20 page 244 et 77 page 2555- 90 page 2566[TransMath]3. Argument d"un nombre complexe.

4. Forme trigonométrique d"un complexe non nul.

5. Passage de la forme algébrique à la forme trigonométrique.

6. Ensembles de points.

5

2.3 Égalité de deux nombres complexes 2 FORME TRIGONOMÉTRIQUE

2.3 Égalité de deux nombres complexes

Propriété :Égalité de deux complexes

Les complexesz=r(cosθ+isinθ)etz?=r?(cosθ?+isinθ?)avecr >0etr?>0sontégaux si et seulement si : r=r?

θ=θ?[2π]Remarque :Attention!L"h ypothèser >0est essentielle pour obtenir la forme trigonométrique d"un

nombre complexe. Exemples :Donner la forme trigonométrique des complexesz1=-3?cos?π4 ?+isin?π4 ??etz2= 2?cos?π6 ?-isin?π6 La forme d onnéep ourz1n"est pas une forme trigonométrique :z1=-3?cos?π4 ?+isin?π4

On a :z1= 3?-cos?π4

?-isin?π4 ??avec? cos?5π4 ?=-cos?π4 sin ?5π4 ?=-sin?π4 La forme trigonométrique dez1est donc :z1= 3?cos?5π4 ?+isin?5π4 ??, c"est-à-dire|z1|= 3et arg(z1) =5π4 [2π]. La forme d onnéep ourz2n"est pas une forme trigonométrique :z2= 2?cos?π6 ?-isin?π6

On a :z2= 2?cos?π6

?+i?-sin?π6 ???avec? cos?-π6 ?= cos?π6 sin ?-π6 ?=-sin?π6 La forme trigonométrique dez2est donc :z2= 2?cos?-π6 ?+isin?-π6 ??, c"est-à-dire|z2|= 2et arg(z2) =-π6 [2π].

Exercice :78 page 2557[TransMath]

2.4 Cas d"un produit ou d"un quotientPropriété :Module et argument d"un produit et d"un quotient

Soientzetz?deux nombres complexes non nuls. On a : |zz?|=|z| × |z?|etarg(zz?) =arg(z) + arg(z?) [2π]???zz ????=|z||z?|etarg?zz arg(z)-arg(z?) [2π]Démonstration (partielle) : On notez=r(cosθ+isinθ)etz?=r?(cosθ?+isinθ?)les formes trigonométriques dezet dez?.

On a donc :?

|z|=r arg(z) =θ[2π]et? |z?|=r? arg(z?) =θ?[2π]

De plus :

zz =rr?[(cosθcosθ?-sinθsinθ?) +i(cosθsinθ?+ sinθcosθ?)] =rr?[cos(θ+θ?) +isin(θ+θ?)] Donc, d"après l"unicité de la forme trigonométrique : |zz?|=rr? arg(zz?) =θ+θ?[2π] Exercice :En suivant un raisonnement analogue, montrer la deuxième partie de la propriété. Remarques :1.Si nest un entier naturel non nul etzun complexe non nul : |zn|=|z|netarg(zn) =narg(z) [2π]7. Détermination de formes trigonométriques. 6

4 APPLICATIONS GÉOMÉTRIQUES DES NOMBRES COMPLEXES

2.

Si zun complexe non nul :????1z

???=1|z|etarg?1z =-arg(z) [2π] Exercices :76 page 254; 79, 80, 81 page 2558- 99, 101 page 2579- [TransMath]

3 Forme exponentielle d"un complexe non nulDéfinition :Pour toutθ?R, on note :

quotesdbs_dbs44.pdfusesText_44
[PDF] somme exponentielle complexe

[PDF] primitive exponentielle complexe

[PDF] exponentielle i pi

[PDF] métaheuristique cours pdf

[PDF] module de exp(ix)

[PDF] méthodes métaheuristiques

[PDF] algorithme heuristique pdf

[PDF] généralités sur les systèmes automatisés de production

[PDF] structure fonctionnelle d'un système automatisé

[PDF] méthodes heuristiques d'optimisation

[PDF] définition d'un système automatisé de production

[PDF] méthodes heuristiques et métaheuristique d'optimisation

[PDF] méthode heuristique optimisation

[PDF] système automatisé de production sap

[PDF] les métaheuristiques en optimisation combinatoire