[PDF] [PDF] Les symboles somme et produit - Lycée dAdultes





Previous PDF Next PDF



Les symboles somme et produit - Lycée dAdultes

27 févr. 2017 1 Le symbole somme r. 1.1 Définition. Définition 1 : Soit (ai) une suite de nombres réels ou complexes. Soit deux.



Sommes produits

https://www.normalesup.org/~glafon/carnot10/recurrence.pdf



LE SYMBOLE DE SOMMATION

Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de la somme de tous les termes du tableau il faut faire varier les deux.



Sommes et produits

Nous avons fait les deux manipulations d'un coup. Exemple. Calcul de la somme des. 1 k(k + 1) . Solution :.



Séries

Les deux dernières formes correspondent à notre décomposition en fonction de la somme des indices. 6.2. Le produit de Cauchy. Définition 4. Soient ?i?0 ai et 



Calcul Algébrique

1.1 Sommes et produits. Nous commençons par les sommes. L'écriture. 5. ? k=0. 2k se lit « somme pour k allant de zéro à cinq de deux puissance k ».



Cours de mathématiques - Exo7

Définir deux variables prenant les valeurs 3 et 6. 2. Calculer leur somme et leur produit. Voici à quoi cela ressemble : Code 1 (hello-world.py).



Relation entre les deux coefficients de corrélation de rangs

est voisine de : deux tiers de Rho un tiers de Sigma. 2. Commençons par un petit exemple Le produit scalaire (somme des produits) = 100. On prendra :.



Chapitre V Symétrie moléculaire Eléments de théorie des groupes1

Le produit Ô de deux (ou plusieurs) opérations symbolisées par Ô1 et Ô2 Cependant la somme des termes diagonaux appelée caractère ou trace et notée ?



Récurrence ; Sommes produits

27 sept. 2011 Mais autant sommer deux ou trois nombres est chose aisée autant l'affaire se complique quand on a besoin de faire la somme d'un grand nombre de ...



[PDF] Les symboles somme et produit - Lycée dAdultes

Définition 2 : Lorsqu'on somme sur deux indices on parle de somme double Soit (aij) une suite double de nombres réels ou complexes et soit 



[PDF] LE SYMBOLE DE SOMMATION

Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes Ce symbole est généralement accompagné d'un indice que l'on 



[PDF] Sommes et produits

Après un changement d'indice le nombre de termes dans la somme doit rester inchangé ! Exemples : E 1 p X k=2



[PDF] Sommes produits récurrence - Normale Sup

18 sept 2010 · Mais autant sommer deux ou trois nombres est chose aisée autant l'affaire se complique quand on a besoin de faire la somme d'un grand nombre de 



Manipulation de sommes à laide du symbole ? - Math-OS

11 oct 2017 · La manipulation de sommes via le symbole \Sigma (sigma) repose sur un petit nombre de règles Cet article a pour objet de les énumérer et 



[PDF] Calcul de sommes et de produits

Réécrivons les sommes ci-dessous en effectuant les changements d'indice proposés 1 n ? k=2 k + 2



[PDF] sommespdf - Pascal Ortiz

On constate alors que la somme de deux termes l'un en-dessous de l'autre est En faisant le produit en croix dans la formule (?) et en posant x = a



[PDF] Sommes et produits

S'il vous reste un indice dans l'expression après le calcul de la somme c'est que vous vous êtes trompé2 Exemple Chercher l'erreur : n ? n=0



[PDF] Calcul Algébrique

se lit « somme pour k allant de zéro à cinq de deux puissance k » produit des entiers de 1 à n intervient dans de nombreuses formules



[PDF] 02 doubles sommationspdf

désigne une somme sur toutes les combinaisons possibles des indices On utilise deux ? lorsque on est en présence d'une somme de sommes Par exemple ?aj 

  • Comment calculer la somme Sigma ?

    Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes. Ce symbole est généralement accompagné d'un indice que l'on fait varier de façon à englober tous les termes qui doivent être considérés dans la somme.
  • Comment calculer le produit de la somme ?

    Règle : pour savoir si une expression est une somme ou un produit, on regarde la dernière opération à effectuer en respectant les règles de priorité :

    1si c'est une addition ou une soustraction, l'expression est une somme ;2si c'est une multiplication ou une division, l'expression est un produit.
  • C'est quoi le produit de la somme ?

    Le produit est le résultat d'une multiplication. La somme est le résultat d'une addition. Le quotient est le résultat d'une division. La différence est le résultat d'une soustraction.
  • un changement par décalage d'indice : on pose l = k + j ?? k = l ? j où k est un entier fixé. un changement où on inverse l'ordre d'énumération : on pose l = n ? k ?? k = n ? l. Après un changement d'indice, le nombre de termes dans la somme doit rester inchangé
DERNIÈRE IMPRESSION LE27 février 2017 à 15:46

Les symboles somme et produit

Table des matières

1 Le symbole sommeΣ2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linéarité et changement d"indice. . . . . . . . . . . . . . . . . . . . 3

1.3 Sommes télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Sommes à connaître. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Sommes doubles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Le symbole produitΠ9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation produit - somme. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Produits télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1 Le symbole sommeΣ

1.1 Définition

Définition 1 :Soit(ai)une suite de nombres réels ou complexes. Soit deux entiers naturelsnetptels quep?n, on définit la somme suivante par : n∑ k=pa k=ap+ap+1+···+an Soit I un sous-ensemble fini deN, la somme de tous les termesai,idécrivant I sera notée∑ i?Ia i

Remarque :

•La variablekest une variable muette, c"est à dire qu"une fois la somme calculée, le résultat ne dépend plus dek. On peut donc lui donner le nom qu"on veut :i, j,k, etc. à exception des bornes de la somme, icipetn:n∑ k=pa k=n∑ i=pa i=n∑ j=pa j

•On retrouve cette variable muette, lorsque l"on veut calculer une somme àl"aide d"un algorithme. (boucle Pour)

•Lorsque les termes de la somme ne dépendent pas de la variable, on somme des termes constants donc : n∑ k=03=3+3···+3? n+1 termes=3(n+1)

•Si I={2;4;6}alors∑

i?Ia i=a2+a4+a6.

Exemples :

•1+2+···+n=n∑

k=1k.

•1+2+22+···+2n=n∑

k=02k. •1 n+1+1n+2+···+12n=n∑ k=11n+k.

•1+3+5+···+(2n-1) =n∑

k=1(2k-1). ?Ne pas confondre : n∑ k=1(k+1) =n∑ k=1k+navecn∑ k=1k+1 les parenthèses font toute la différence. n∑ k=022k(n+1 termes) et2n∑ k=02k(2n+1 termes) Propriété 1 :Relation de Chasles et linéarité :

Relation de Chasles :

n∑ k=pa k= m∑ k=pa k+n∑ k= m+1 ak

L"opérateur somme est linéaire :

n∑ k=p(αak+βbk) =αn∑ k=pa k+βn∑ k=pb k.

PAUL MILAN2VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Exemple :n∑

k=0a k=

2∑

k=0a k+n∑ k= 3 aketn∑ k=0(3k+4k) =n∑ k=03k+4n∑ k=0k

1.2 Linéarité et changement d"indice

Propriété 2 :Changement d"indice.

L"expression à l"aide du symbole

∑n"est pas unique. On peut écrire une somme avec des indices différents. Les changements d"indicesk→k+p(translation)k→p-k(symétrie) sont les plus fréquents :n∑ k=1a k=n+p k=p+1a k-p=p-1 k=p-na p-k

Exemples :Calculer la somme :Sn=n∑

k=1?

1k-1k+1?

•On utilise la linéarité :Sn=n∑

k=11k-n∑ k=11k+1 •On effectue un changement d"indice sur la deuxième somme :k→k+1 : S n=n∑ k=11 k-n+1∑ k=21k. k=21k-n∑ k=21k-k=n+1? ???1 n+1=1-1n+1

Pourn?2, on considère la sommeSn=n+1∑

k=2k22k-1. Faire une translation d"indice pour que la nouvelle variable varieentre 0 et(n-1) et une symétrie d"indice pour que la nouvelle variable varie entre 2et(n+1). •Pour la translation, il suffit de faire :k→k-2, on a alors : S n=n-1∑ k=0(k+2)22(k+2)-1=n-1∑ k=0(k+2)22k+3 •Pour la symétrie, il faut déterminer le milieu :2+ (n+1)2=n+32. On effectue alors la symétriek→n+3-k, on a alors : S n=n+1∑ k=2(n+3-k)22(n+3-k)-1=n+1∑ k=2(n+3-k)22n+5-2k

PAUL MILAN3VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.3 Sommes télescopiques

Théorème 1 :Sommes télescopiques

Soit une suite(an)une suite de nombres réels ou complexes, on a : ?n,p?N,p?n,n∑ k=p(ak+1-ak) =an+1-ap

Remarque :n∑

k=0(ak+1-ak) =an+1-a0etn∑ k=0(bk-bk+1) =b0-bn+1

Démonstration :On pose :Sn=n∑

k=p(ak+1-ak)

•On utilise la linéarité :Sn=n∑

k=pa k+1-n∑ k=pa k •On effectue un changement d"indice sur la première somme :k→k+1 S n=n+1∑ k=p+1a k-n∑ k=pa k •On sépare les termes différents :Sn=an+1+n∑ k=p+1a k-n∑ k=p+1a k-ap=an+1-ap Exemples :Lessommestélescopiquessontuneméthodetrèsefficacepourcalcu- ler la somme des termes d"une suite(un). Il s"agit de trouver une suite(vn)pour queun=vn+1-vn. Ce n"est bien sûr pas toujours possible malheureusement.

Calculer les sommes suivantes :

•Sn=n∑

k=11k(k+1): on décompose1k(k+1)en1k-1k+1 S n=n∑ k=11 k(k+1)=n∑ k=1?

1k-1k+1?

=1-1n+1.

•Rn=n∑

k=1k×k! : on décomposek×k! en(k+1)k!-k!= (k+1)!-k! R n=n∑ k=1k×k!=n∑ k=1[ (k+1)!-k!]= (n+1)!-1

•Tn=n∑

k=11k(k+1)(k+2) a k(k+1)-a(k+1)(k+2)=a(k+2)-akk(k+1)(k+2)=2ak(k+1)(k+2), on aa=12 T n=n∑ k=11 k(k+1)(k+2)=12n∑ k=1?

1k(k+1)-1(k+1)(k+2)?

1 2?

12-1(n+1)(n+2)?

n(n+3)

4(n+1)(n+2)

PAUL MILAN4VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.4 Sommes à connaître

Théorème 2 :Somme des entiers, des carrés, des cubes Pour tout entier naturelnnon nul, on a les relations suivantes :

•S1(n) =n∑

k=1k=1+2+···+n=n(n+1)2

•S2(n) =n∑

k=1k2=1+4+···+n2=n(n+1)(2n+1)6

•S3(n) =n∑

k=1k3=1+8+···+n3=n2(n+1)24 Démonstration :La première formule a été démontré en première en ordon- nant la somme dans l"ordre croissant puis dans l"ordre décroissant. Les deux der- nières formules ont été démontré en terminale par récurrence. Mais les démons- trations directes sont possibles à l"aide de sommes télescopiques. On pourrait généraliser ces démonstration aux somme des puissancespième des entiers na- turels.

•S1(n), on utilise la sommen∑

k=1[(k+1)2-k2] = (n+1)2-1 n∑ k=1[(k+1)2-k2] =n∑ k=1(k2+2k+1-k2) =n∑ k=1(2k+1) =2n∑ k=1k+n∑ k=11=2S1(n) +n

On en déduit que :

2S1(n) +n= (n+1)2-1?S1(n) =(n+1)2-(n+1)

2=n(n+1)2

S2(n), on utilise la sommen∑

k=1[(k+1)3-k3] = (n+1)3-1 n∑ k=1[(k+1)3-k3] =n∑ k=1(k3+3k2+3k+1-k3) =n∑ k=1(3k2+3k+1) =3n∑ k=1k2+3n∑ k=1k+n∑ k=11=3S2(n) +3S1(n) +n

On en déduit que :

3S2(n)+3S1(n)+n= (n+1)3-1?3S2(n) =?(n+1)3-1-3S1(n)-n??

S 2=1 3? (n+1)3-3n(n+1)2-(n+1)? =2(n+1)3-3n(n+1)-2(n+1)6 (n+1)(2n2+4n+2-3n-2)

6=(n+1)(2n2+n)6=n(n+1)(2n+1)6

PAUL MILAN5VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

•S3(n), on utilise la sommen∑

k=1[(k+1)4-k4] = (n+1)4-1 n∑ k=1[(k+1)4-k4] =n∑ k=1(k4+4k3+6k2+4k+1-k4) =n∑ k=1(4k3+6k2+4k+1) =4n∑ k=1k3+6n∑ k=1k2+4n∑ k=1k+n∑ k=11=4S3(n) +6S2(n) +4S1(n)+n

On en déduit que :

4S3(n) +6S2(n) +4S1(n) +n= (n+1)4-1?

4S2(n) = (n+1)4-1-6S2(n)-4S1(n)-n

= (n+1)4-n(n+1)(2n+1)-2n(n+1)-(n+1) = (n+1)? (n+1)3-n(2n+1)-2n-1? = (n+1)(n3+3n2+3n+1-2n2-n-2n-1) = (n+1)(n3+n2) =n2(n+1)2

Théorème 3 :Somme géométrique

Pour tous naturelspetntels quep?n

et pour tout réel ou complexextel quex?=1, on a : n∑ k=pxk=xp×1-xn+1-p

1-x=premier terme×1-xNbre de termes1-x

Démonstration :PosonsSn=n∑

k=pxk.

•On utilise une somme télescopique :

S n-xSn=n∑ k=pxk-n∑ k=pxk+1=n∑ k=p(xk-xk+1) =xp-xn+1 •On factorise :Sn(1-x) =xp(1-xn+1-p)x?=1?Sn=xp×1-xn+1-p1-x

Exemple :S=n∑

k=32k=23×1-2n-2

1-2=23(2n-2-1) =2n+1-8

Théorème 4 :Factorisation standard

Pour tout naturelnet pour tous réels ou complexesaetb, on a : a n-bn= (a-b) n-1∑ k=0an-k-1bk= (a-b)(an-1+an-2b+···+abn-2+bn-1)quotesdbs_dbs4.pdfusesText_7
[PDF] indemnité de mobilité fonction publique territoriale

[PDF] calcul prime de mobilité

[PDF] indemnité de mobilité cdg

[PDF] changement de résidence administrative fonction publique territoriale

[PDF] prime de mobilité professionnelle

[PDF] prime de mobilité géographique

[PDF] indemnité de mobilité professionnelle

[PDF] indemnité mobilité pole emploi

[PDF] clause de mobilité legifrance

[PDF] code du travail marocain mutation

[PDF] code de travail marocain changement de poste

[PDF] clause de mobilité code du travail maroc

[PDF] code de travail marocain mobilité

[PDF] clause de mobilité droit marocain

[PDF] tutoriel padlet 2017