[PDF] Calcul Algébrique 1.1 Sommes et produits.





Previous PDF Next PDF



Les symboles somme et produit - Lycée dAdultes

27 févr. 2017 1 Le symbole somme r. 1.1 Définition. Définition 1 : Soit (ai) une suite de nombres réels ou complexes. Soit deux.



Sommes produits

https://www.normalesup.org/~glafon/carnot10/recurrence.pdf



LE SYMBOLE DE SOMMATION

Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de la somme de tous les termes du tableau il faut faire varier les deux.



Sommes et produits

Nous avons fait les deux manipulations d'un coup. Exemple. Calcul de la somme des. 1 k(k + 1) . Solution :.



Séries

Les deux dernières formes correspondent à notre décomposition en fonction de la somme des indices. 6.2. Le produit de Cauchy. Définition 4. Soient ?i?0 ai et 



Calcul Algébrique

1.1 Sommes et produits. Nous commençons par les sommes. L'écriture. 5. ? k=0. 2k se lit « somme pour k allant de zéro à cinq de deux puissance k ».



Cours de mathématiques - Exo7

Définir deux variables prenant les valeurs 3 et 6. 2. Calculer leur somme et leur produit. Voici à quoi cela ressemble : Code 1 (hello-world.py).



Relation entre les deux coefficients de corrélation de rangs

est voisine de : deux tiers de Rho un tiers de Sigma. 2. Commençons par un petit exemple Le produit scalaire (somme des produits) = 100. On prendra :.



Chapitre V Symétrie moléculaire Eléments de théorie des groupes1

Le produit Ô de deux (ou plusieurs) opérations symbolisées par Ô1 et Ô2 Cependant la somme des termes diagonaux appelée caractère ou trace et notée ?



Récurrence ; Sommes produits

27 sept. 2011 Mais autant sommer deux ou trois nombres est chose aisée autant l'affaire se complique quand on a besoin de faire la somme d'un grand nombre de ...



[PDF] Les symboles somme et produit - Lycée dAdultes

Définition 2 : Lorsqu'on somme sur deux indices on parle de somme double Soit (aij) une suite double de nombres réels ou complexes et soit 



[PDF] LE SYMBOLE DE SOMMATION

Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes Ce symbole est généralement accompagné d'un indice que l'on 



[PDF] Sommes et produits

Après un changement d'indice le nombre de termes dans la somme doit rester inchangé ! Exemples : E 1 p X k=2



[PDF] Sommes produits récurrence - Normale Sup

18 sept 2010 · Mais autant sommer deux ou trois nombres est chose aisée autant l'affaire se complique quand on a besoin de faire la somme d'un grand nombre de 



Manipulation de sommes à laide du symbole ? - Math-OS

11 oct 2017 · La manipulation de sommes via le symbole \Sigma (sigma) repose sur un petit nombre de règles Cet article a pour objet de les énumérer et 



[PDF] Calcul de sommes et de produits

Réécrivons les sommes ci-dessous en effectuant les changements d'indice proposés 1 n ? k=2 k + 2



[PDF] sommespdf - Pascal Ortiz

On constate alors que la somme de deux termes l'un en-dessous de l'autre est En faisant le produit en croix dans la formule (?) et en posant x = a



[PDF] Sommes et produits

S'il vous reste un indice dans l'expression après le calcul de la somme c'est que vous vous êtes trompé2 Exemple Chercher l'erreur : n ? n=0



[PDF] Calcul Algébrique

se lit « somme pour k allant de zéro à cinq de deux puissance k » produit des entiers de 1 à n intervient dans de nombreuses formules



[PDF] 02 doubles sommationspdf

désigne une somme sur toutes les combinaisons possibles des indices On utilise deux ? lorsque on est en présence d'une somme de sommes Par exemple ?aj 

  • Comment calculer la somme Sigma ?

    Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes. Ce symbole est généralement accompagné d'un indice que l'on fait varier de façon à englober tous les termes qui doivent être considérés dans la somme.
  • Comment calculer le produit de la somme ?

    Règle : pour savoir si une expression est une somme ou un produit, on regarde la dernière opération à effectuer en respectant les règles de priorité :

    1si c'est une addition ou une soustraction, l'expression est une somme ;2si c'est une multiplication ou une division, l'expression est un produit.
  • C'est quoi le produit de la somme ?

    Le produit est le résultat d'une multiplication. La somme est le résultat d'une addition. Le quotient est le résultat d'une division. La différence est le résultat d'une soustraction.
  • un changement par décalage d'indice : on pose l = k + j ?? k = l ? j où k est un entier fixé. un changement où on inverse l'ordre d'énumération : on pose l = n ? k ?? k = n ? l. Après un changement d'indice, le nombre de termes dans la somme doit rester inchangé
Calcul Algébrique

Université Joseph Fourier, Grenoble I

Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies1eannéeCalcul Algébrique

Eric Dumas, Emmanuel Peyre, Bernard Ycart

Ce chapitre est consacré à la manipulation de formules algébriques, constituées de variables formelles, de réels ou de complexes. L"objectif est essentiellement pratique : " savoir calculer ». La seule nouveauté réside dans la manipulation de formules avec indices, utilisant les symboles?(somme) et?(produit). Pour le reste, vous aurez simplement à réviser votre cours de terminale sur les nombres complexes.

Table des matières

1 Cours 2

1.1 Sommes et produits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Trois formules à connaître . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Formes trigonométrique et exponentielle . . . . . . . . . . . . . . . . . 13

1.5 Géométrie du plan complexe . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Entraînement 17

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Compléments 37

3.1 Les formules de Ramanujan . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Le Rapido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Si non è vero, è bene trovato . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 La marquise de Tencin . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Equations résolubles par radicaux . . . . . . . . . . . . . . . . . . . . . 42

Maths en L

1gneCalcul AlgébriqueUJF Grenoble1 Cours

1.1 Sommes et produits

Nous commençons par les sommes.

L"écriture

5? k=02k se lit "somme pourkallant de zéro à cinq de deux puissancek». C"est une notation abrégée pour : 2

0+ 21+ 22+ 23+ 24+ 25.

La lettrekest l"indice de sommation. On la remplace successivement par toutes les valeurs entières comprises entre les deuxbornes, qui sont0et5dans notre exemple. La première borne, celle qui est écrite au-dessous du signe somme, sera toujours inférieure ou égale à celle qui est au-dessus. Les bornes peuvent elles-mêmes être des variables, mais elles sont nécessairement différentes de l"indice de sommation. Par exemple, pour tout entier natureln:n? k=02k désigne la somme 2

0+ 21+ 22+ 23+···+ 2n-1+ 2n.

Rappelons que, par convention,a0= 1pour tout nombre réela. Prenez l"habitude d"écrire les sommes sous forme développée quitte à introduire des points de suspension entre les premiers termes et les derniers. Voici quelques exemples d"égalités illustrant la manipulation des indices et des bornes. Nous donnons sous chaque exemple une

écriture sous forme développée.

n k=12k=n-1? h=02h+1 2

1+···+ 2n= 20+1+···+ 2n-1+1.

L"indice de sommation peut être remplacé par n"importe quel autre : on dit que c"est unevariable muette. n k=02k+n h=12n+h=2n? k=02k (2

0+···+ 2n) + (2n+1+···+ 22n) = 20+···+ 22n.

Observez que la borne peut être une des variables de la quantité à sommer. n k=02n= (n+ 1)2n 2 n+···+ 2n= (n+ 1)2n. 2

Maths en L

1gneCalcul AlgébriqueUJF GrenobleDans cet exemple la quantité à sommer ne dépend pas de l"indice de sommation : celle-

ci a pour seul effet de compter les termes. Attention, pourm6n, il y an-m+ 1 termes dans la somme demàn. n k=01 h=02k+h=1 h=0n k=02k+h (2

0+ 21) +···+ (2n+ 2n+1) = (20+···+ 2n) + (21+···+ 2n+1).

Une double somme est une somme de sommes, et on peut toujours intervertir les deux. Voici un enchaînement d"égalités, montrant que la somme des puissances de2de20 jusqu"à2nvaut(2n+1-1)(c"est un cas particulier d"une formule à connaître que nous verrons plus loin). Pour chaque ligne de calcul, nous donnons à droite l"écriture sous forme développée. On rappelle que20= 1. n k=02k= 2? n? k=02k? n? k=02k?= 2(2

0+···+ 2n)-(20+···+ 2n)

n? k=02k+1? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

n+1? h=12h? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

= 2 n+1-20= 2 n+1-1. Ce que nous venons de voir pour les sommes s"applique aussi aux produits. Le produit des entiers de1ànintervient dans de nombreuses formules. C"est lafactorielle den. Elle se note "n!». n! =n k=1k= 1 2 3···(n-2) (n-1)n . Il est souvent utile d"étendre la définition de la factorielle en convenant que0! = 1. Voici les premières valeurs.n0 1 2 3 4 5 6 7 8 9 10 n!1 1 2 6 24 120 720 5040 40320 362880 3628800 Sinest un entier positif, unn-upletdésigne une liste ordonnée denobjets. On appellepermutation des nombres de1ànunn-uplet d"entiers(u1,...,un)dans lequel chaque entier entre1etnapparaît une et une seule fois. Par exemple(5,3,2,4,1)est une permutation des nombres de1à5. Théorème 1.Le nombre de permutations des nombres de1ànestn!. Démonstration: On montre le théorème par récurrence surn. 3

Maths en L

1gneCalcul AlgébriqueUJF GrenobleSin= 1, la seule permutation des entiers de1à1est(1).

On suppose donc que le résultat est vrai pour l"entiern. Montrons-le pour l"entier n+1. Soitkun entier tel que16k6n+1et comptons le nombreAkde permutations (u1,...,un+1) telles queuk=n+ 1. À une telle permutation, associons len-uplet : (u1,...,uk-1,uk+1,...,un+1). C"est une permutation des nombres de1àn. Inversement étant donnée une permutation (v1,...,vn)des entiers de1àn, alors (v1,...,vk-1,n+ 1,vk+1,...,vn) est une permutation des entiers de1àn+ 1dont lek-ième terme estn+ 1. En appliquant l"hypothèse de récurrence, on obtient queAk=n!. Donc le nombre total de permutations des nombres de1àn+ 1est : n+1? k=1A k=n+1? k=1n! = (n+ 1)n! = (n+ 1)!. ce qui montre le résultat pourn+ 1. Pour ordonnernobjets, il faut associer à chacun un nombre entre1etnde sorte que chaque nombre renvoie à un objet et un seul. Il y a autant de manières de le faire que de permutations desnpremiers entiers :n!. Au tiercé, il y a5! = 120manières d"ordonner les 5 premiers chevaux. Une seule donne l"ordre d"arrivée, soit le quinté dans l"ordre, et il y a119quintés dans le désordre. Lenombre de combinaisonsdekobjets parminest le nombre de manières de choisir kobjets parmin, sans distinguer leur ordre. ?n k? =n!k!(n-k)!.(1)

La notation

?n k?que nous utilisons ici, de préférence à l"ancienne notationCkn, est conforme aux programmes en vigueur et à l"usage international. Nous conseillons de la lire " denchoisirk». La formule (1) correspond au raisonnement suivant. Pour choisirkobjets, on peut se donner une permutation desnobjets, et décider d"en retenir leskpremiers. Parmi les permutations, toutes celles qui auront en commun leurskpremiers nombres conduiront au même choix. Il faut donc diviser par le nombre de permutations deskobjets choisis, et par le nombre de permutations desn-kobjets qui ne l"ont pas été. Observez que (1) ne change pas si on remplacekparn-k. ?n k? =?n n-k? 4

Maths en L

1gneCalcul AlgébriqueUJF GrenobleChoisirkobjets parmin(ceux que l"on garde) revient à en choisirn-k(ceux que l"on

laisse).

Voici une autre expression de?n

k?. ?n k? =1k!k-1? h=0(n-h) =n(n-1)···(n-k+ 1)1 2···k.(2) Notez qu"il y akfacteurs au numérateur, comme au dénominateur. On obtient cette formule en simplifiant le quotientn!/(n-k)!dans (1). On peut aussi raisonner comme suit. Il y anfaçons de choisir le premier objet, puisn-1de choisir le second (puisqu"un objet a déjà été choisi), etc. Pour choisir le k-ième objet, il resten-(k-1)possibilités. Ceci correspond au numérateur de (2). Cette manière de procéder retourne une liste ordonnée. Il faut donc diviser par le nombre d"ordres possibles deskobjets choisis, qui estk!. Observez les relations suivantes, faciles à déduire de (1) ou (2) et de la définition de la factorielle. ?n k? =nk n-1 k-1? =n-k+ 1k n k-1?

Pour calculer

?n k?en pratique, on n"utilise ni (1) ni (2). Le calcul récursif par la formule dutriangle de Pascal(connue des chinois bien avant Pascal) est beaucoup plus rapide.?n k? =?n-1 k? +?n-1 k-1? .(3) Nous conseillons au lecteur de démontrer cette formule à partir des expressions (1) et (2). Voici la justification combinatoire. Supposons que parmi lesnobjets dontk doivent être choisis, l"un d"entre eux soit distingué (disons qu"il est rouge). Parmi les choix possibles dekobjets, certains ne contiennent pas l"objet rouge, d"autres le contiennent. Les premiers sont au nombre de?n-1 k?, car leskobjets sont choisis parmi lesn-1différents de l"objet rouge. Les choix contenant l"objet rouge sont au nombre de?n-1 k-1?car l"objet rouge ayant été retenu, il restek-1objets à choisir parmi lesn-1 autres. Voici, disposées en triangle, les valeurs de?n k?pournallant de0à6. n\k0 1 2 3 4 5 6 01 11 1

21 2 1

31 3 3 1

41 4 6 4 1

51 5 10 10 5 1

61 6 15 20 15 6 1

Chaque valeur est la somme de celle qui est au-dessus, et de celle qui est à gauche de celle qui est au-dessus. S"il n"est pas indispensable de connaître ce tableau par coeur, il est souvent utile de savoir le réécrire rapidement. 5

Maths en L

1gneCalcul AlgébriqueUJF Grenoble1.2 Trois formules à connaître

Les formules données par les trois théorèmes qui suivent vous seront souvent utiles. Théorème 2.Pour tout entiern>1, la somme desnpremiers entiers vaut n(n+ 1)/2. n? k=1k= 1 + 2 +···+n=n(n+ 1)2 .(4) Démonstration: Nous donnons d"abord la démonstration par récurrence. Nous verrons ensuite une justification géométrique et une justification combinatoire. L"hypothèse de récurrence est : H(n)n k=1k=n(n+ 1)2

Pourn= 1:1?

k=1k= 1 =1(1 + 1)2

Supposons maintenant queH(n)est vraie. Ecrivons :

n+1? k=1k=? n? k=1k? + (n+ 1).

En appliquantH(n), on obtient :

n? k=1k? + (n+ 1) =n(n+ 1)2 + (n+ 1).

Le membre de droite s"écrit :

n(n+ 1)2 + (n+ 1) =(n+ 1)(n+ 2)2

Nous avons donc démontré que :

n+1? k=1k=(n+ 1)(n+ 2)2 c"est-à-dire queH(n+ 1)est vraie. Voici maintenant une justification géométrique. Considérons un rectangle dont la largeur et la hauteur valent respectivementn+ 1etnunités (figure 1). Ce rectangle

peut être découpé en deux moitiés superposables. Chacune est formée de1+2+···+n

carrés de côté unité, et couvre une surface égale à la surface du rectangle divisée par

quotesdbs_dbs29.pdfusesText_35
[PDF] indemnité de mobilité fonction publique territoriale

[PDF] calcul prime de mobilité

[PDF] indemnité de mobilité cdg

[PDF] changement de résidence administrative fonction publique territoriale

[PDF] prime de mobilité professionnelle

[PDF] prime de mobilité géographique

[PDF] indemnité de mobilité professionnelle

[PDF] indemnité mobilité pole emploi

[PDF] clause de mobilité legifrance

[PDF] code du travail marocain mutation

[PDF] code de travail marocain changement de poste

[PDF] clause de mobilité code du travail maroc

[PDF] code de travail marocain mobilité

[PDF] clause de mobilité droit marocain

[PDF] tutoriel padlet 2017