[PDF] Introduction aux équations différentielles et aux dérivées partielles





Previous PDF Next PDF



Équations di érentielles linéaires du premier ordre

Proposition 1 (Solutions de l'équation homogène). Soit I un intervalle de R et a : I ? R une fonction continue sur I. Les solutions sur I de l'équation u 



Équations di érentielles linéaires du 1er et du 2nd ordre à coe cients

m x(t) + c ?x(t) + k x(t) = Fext(t) avec conditions initiales x(0)= ?x(0) = 0 pour un mobile initialement au repos. 3. Page 12. 1. Motivations. Circuit RLC 



1 Équations di érentielles linéaires du premier ordre - 1.1 Résumé

18 mai 2010 1 Équations di érentielles linéaires du premier ordre. 1.1 Résumé ... Exercice 1 (Premier ordre sans second membre : Exo 1 de la feuille 4).



Introduction aux équations différentielles et aux dérivées partielles

5.4 Résoudre les équations différentielles linéaires . Exemple 1 Equation du premier ordre sous la forme normale y = f(t y) (ou.



Équations Différentielles du 1er Ordre [1em] Philippe Briand [.5em

Équa. di. linéaires du 1er ordre à coe. constants. Séance no 1 du 07/02/2017. Généralités sur les équations différentielles.



Introduction aux Equations aux Dérivées Partielles

3 EDP linéaires du premier ordre 3.6.1 EDP du premier ordre `a coefficients constants . ... Rappelons le cas des équations différentielles linéaires.



Classification analytique des équations différentielles non linéaires

Classification analytique des équations différentielles non linéaires résonnantes du premier ordre. Annales scientifiques de l'É.N.S. 4e série tome 16



1 Léquation et son équation homogène

On appelle équation di érentielles linéaires du second ordre à coe cients constants toute équation de la forme : ?y// + ?y/ + ?y = g



Cours de mathématiques - Exo7

les équations différentielles linéaires du premier ordre et celles du second ordre à coefficients constants. • Une équation différentielle d'ordre n est 



Équations di érentielles linéaires du 1er et du 2nd ordre à coe cients

2 Équations différentielles du 1er ordre. Définitions. Solution générale. Problème de Cauchy. Second membre exponentiel. Second membre trigonométrique.

Introduction aux équations différentielles et aux dérivées partielles Université Claude Bernard, Lyon ILicence Sciences, Technologies & Santé

43, boulevard 11 novembre 1918Spécialité Mathématiques

69622 Villeurbanne cedex, FranceL. Pujo-Menjouet

pujo@math.univ-lyon1.fr

Introduction

aux équations différentielles et aux dérivées partielles 1 2

Table des matières

I Equations différentielles 7

1 Méthodes de résolution explicite des équations différentielles "simples" 9

1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

1.2 Réduction à une équation du premier ordre . . . . . . . . . . . . . . . . . . . . . .

11

1.3 Intégration d"équations différentielles d"un certain type - quelques techniques . . .

12

1.3.1 Equations à variables séparées (ou séparables) . . . . . . . . . . . . . . . .

12

1.3.2 Equations homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1.3.3 Equations linéaires du premier ordre . . . . . . . . . . . . . . . . . . . . .

15

1.3.4 Equations de BERNOULLI . . . . . . . . . . . . . . . . . . . . . . . . .

17

1.3.5 Equations de LAGRANGE et de CLAIRAUT . . . . . . . . . . . . . . . .

17

1.3.6 Formulation générale -Equa. dif. totales - Facteurs intégrants . . . . . . . .

18

1.3.7 Equation des facteurs intégrants . . . . . . . . . . . . . . . . . . . . . . .

20

2 "Brève" théorie générale des équations différentielles 21

2.1 Problème de Cauchy en dimension finie . . . . . . . . . . . . . . . . . . . . . . .

21

2.2 Localisation des solutions du problème de Cauchy . . . . . . . . . . . . . . . . . .

22

2.3 Méthode d"approximation de Picard - Existence et Unicité locale . . . . . . . . . .

23

2.4 Unicité globale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

2.5 Points d"Unicité Locale et Globale d"un problème de Cauchy . . . . . . . . . . . .

25

2.6 Théorèmes d"existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

3 Equations différentielles d"ordre supérieur 29

3.1 Problèmes avec conditions initiales et conditions aux bords . . . . . . . . . . . . .

29

3.1.1 Problèmes avec conditions initiales . . . . . . . . . . . . . . . . . . . . .

29

3.1.2 Problèmes avec conditions aux bords . . . . . . . . . . . . . . . . . . . .

30

3.1.3 Equations homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

3.1.4 Opérateur différentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

3.1.5 Principe de substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

3.1.6 Dépendance et indépendance linéaire . . . . . . . . . . . . . . . . . . . .

32

3.1.7 Solution d"équa. diff. pour les solutions linéairement indép. d"équa. diff.

linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.8 Solutions générales d"équations nonhomogènes . . . . . . . . . . . . . . .

33

3.2 Réduction d"ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

3.3 Equation linéaire homogène avec coefficients constants . . . . . . . . . . . . . . .

35

3.3.1 Ordre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35
3

3.3.2 Ordre supérieur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

3.4 Coefficients indéterminés- Approche par superposition . . . . . . . . . . . . . . .

36

3.5 Coefficients indéterminés- Approche de l"annihilateur . . . . . . . . . . . . . . . .

37

3.5.1 Mise en facteurs d"opérateurs . . . . . . . . . . . . . . . . . . . . . . . .

37

3.5.2 Opérateur annihilateur . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

3.5.3 Coefficients indéterminés . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

3.6 Variations des paramètres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

3.6.1 Ordre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

3.6.2 Equations d"ordre supérieur . . . . . . . . . . . . . . . . . . . . . . . . .

40

3.7 Equation de Cauchy-Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

3.7.1 Equation homogène d"ordre 2 . . . . . . . . . . . . . . . . . . . . . . . .

41

3.8 Résoudre des systèmes d"équations linéaires par élimination . . . . . . . . . . . .

42

4 Séries solutions d"équations différentielles linéaires 43

4.1 Solution autour de points ordinaires . . . . . . . . . . . . . . . . . . . . . . . . .

43

4.1.1 Rappel sur les séries entières . . . . . . . . . . . . . . . . . . . . . . . . .

43

4.1.2 Solutions sous forme de séries entières . . . . . . . . . . . . . . . . . . .

44

4.2 Solutions autour des points singuliers . . . . . . . . . . . . . . . . . . . . . . . .

44

4.3 Deux équations spéciales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

5 Transformée de Laplace 47

5.1 Rappel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

5.2 Définition de la transformée de Laplace . . . . . . . . . . . . . . . . . . . . . . .

47

5.3 Transformée inverse et transformée de dérivées . . . . . . . . . . . . . . . . . . .

48

5.3.1 Transformée inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

5.3.2 Transformer une dérivée . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

5.4 Résoudre les équations différentielles linéaires . . . . . . . . . . . . . . . . . . . .

50

5.5 Théorème de translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

5.5.1 Translation sur l"axe dess. . . . . . . . . . . . . . . . . . . . . . . . . .

50

5.5.2 Translation sur l"axe dest. . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6 Propriétés additionnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.1 Multiplier une fonction partn. . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.3 Transformée d"une intégrale . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.4 Equation intégrale de Volterra . . . . . . . . . . . . . . . . . . . . . . . .

52

5.6.5 Transformée de fonction périodique . . . . . . . . . . . . . . . . . . . . .

52

5.6.6 Fonction±-Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

6 Systèmes différentiels linéaires 53

6.1 Théorie préliminaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

6.1.1 Systèmes homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

6.1.2 Systèmes non-homogènes . . . . . . . . . . . . . . . . . . . . . . . . . .

55

6.2 Systèmes linéaires homogènes avec des coefficients constants . . . . . . . . . . . .

55

6.2.1 Valeurs propres et vecteurs propres . . . . . . . . . . . . . . . . . . . . .

55

6.3 Variation de la constante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57
4

6.3.1 Matrice fondamentale . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

6.3.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

6.3.3 Variation de la constante . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

6.4 Exponentielle d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

6.4.1 Systèmes homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

6.4.2 Systèmes non homogènes . . . . . . . . . . . . . . . . . . . . . . . . . .

59

6.4.3 Utilisation de la transformée de Laplace . . . . . . . . . . . . . . . . . . .

59

II Equations aux dérivées partielles 61

7 Equation de la chaleur 63

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

7.2 Construction du modèle de la chaleur dans une time (1D) . . . . . . . . . . . . . .

64

7.2.1 Densité de l"énergie thermique . . . . . . . . . . . . . . . . . . . . . . . .

64

7.2.2 Energie de la chaleur . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

7.2.3 Conservation de l"énergie de la chaleur . . . . . . . . . . . . . . . . . . .

64

7.2.4 Température et chaleur spécifique . . . . . . . . . . . . . . . . . . . . . .

66

7.2.5 Energie thermique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

7.2.6 Loi de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66
5 6

Première partie

Equations différentielles

7

Chapitre 1

Méthodes de résolution explicite des

équations différentielles "simples"

1.1 Définitions

Donnons tout d"abord quelques définitions essentielles pour commencer sur de bonnes bases.

Définition 1

Equation différentielle ordinaire.Une équation différentielle ordinaire (EDO) est

une relation entre la variable réellet, une fonction inconnuet7!y(t)et ses dérivéesy0,y00, ...,

y (n)au pointtdéfinie par F(t;y(t);y0(t);y00(t);:::;y(n)(t)) = 0 (on notera par abusF(t;y;y0;y00;:::;y(n)) = 0)(1.1) On dit que cette équation est scalaire siFest à valeurs dansR. (N.B. : on pourra utiliserxde temps en temps au lieu det, i.e.y(t)ouy(x))

Définition 2

Equation différentielle normale.On appelle équation différentielle normale d"ordre ntoute équation de la forme y (n)=f(t;y;y0;:::;y(n¡1))(1.2) Donnons un exemple pour mettre les idées au clair.

Exemple 1

Equation du premier ordre sous la forme normale

y

0=f(t;y) (oudy

dt =f(t;y))(1.3)

Donnons maintenant une classification par linéarité. Une EDO du type (1.1) d"ordrenest linéaire

si elle a la forme suivante : a noter que (1) tous lesy(i)sont de degré1, et (2) tous les coefficients dépendent au plus dex 9

Exemple 2

Dire si les équations différentielles suivantes sont linéaires ou non linéaires, et donner

leur ordre (on justifiera les réponses). i:(y¡x)dx+ 4xdy= 0ii: y00¡2y0+y= 0iii:d3y dx 3+xdy dx

¡5y=ex

iv:(1¡y)y0+ 2y=exv:d2y dx

2+ siny= 0vi:d4y

dx

4+y2= 0

Définition 3

Solution.On appelle solution (ou intégrale) d"une équation différentielle d"ordren sur un certain intervalleIdeR, toute fonctionydéfinie sur cet intervalleI,nfois dérivable enquotesdbs_dbs29.pdfusesText_35
[PDF] Page 1 Les équations différentielles Laurent Serlet Janvier 2001

[PDF] 1 Equations différentielles du premier ordre

[PDF] Résumé de cours sur les équations différentielles Table des - IECL

[PDF] Résolution des équations différentielles linéaires du second ordre `a

[PDF] CORRIGE Je résous des équations du premier degré EXERCICE

[PDF] CHAPITRE 7 ÉQUATION DE PROPAGATION DU RADAR

[PDF] SECOND DEGRE - Maths-et-tiques

[PDF] 1 Equations-produits

[PDF] Cours de mécanique M12-Chute libre avec frottements - Physagreg

[PDF] Chapitre 2: Mouvements Rectilignes

[PDF] équations et inéquations avec ln ou exp - IES Eugeni D 'Ors

[PDF] Exercices sur la fonction logarithme Exercice 1 : Résoudre dans les

[PDF] Équations : exercices - Xm1 Math

[PDF] Droites du plan - Exo7 - Emathfr

[PDF] Exo7 - Exercices de mathématiques