[PDF] MATH Tle D OK 2 MINISTERE DE L'EDUCATION NATIONALE.





Previous PDF Next PDF



Fascicule 2 Fascicule 2

Le lecteur trouvera dans le fascicule 1 d'EVAPM terminale : • La liste des mathématiques en Terminale et le recueil de l'opinion des collègues sur cet ...



VISA BAC

mathématiques (y) de 11 élèves d'une classe de Terminale S1 donne les pourcentage de 2006 à 2010 d'un lycée du Sénégal. Année. 2006 2007 2008 2009 2010.



m. abdou salam diop professeur de mathematiques au lycee de koki

Exemple A: sur une classe de terminale on étudie simultanément les notes en maths X et en philo photographies du Sénégal



math_6e.pdf math_6e.pdf

Fascicule MATHEMATIQUES – 6ème v10.17. Fascicule GRATUIT offert par le projet ADEM Dakar financé par l'AFD -. 1. Page 3. Fascicule MATHEMATIQUES – 6ème v10.17.



Mathématiques Cours exercices et problèmes Terminale S

⋆⋆⋆ Très difficile – à essayer pour toute poursuite d'études exigeante en maths. Ces étoiles sont simplement un indicateur de la difficulté globale d'un 



Cours T erminale S2 Cours T erminale S2

Terminale S2 des lycées sénégalais.... Méckhé le 29/12/2015 vers 22h48. 7 ... objets mathématiques pour le modéliser : d'où la naissance de la théorie des ...



Document dappui aux cours de mathématiques en TS1

SENEGAL. Page 2. Document d'appui aux cours de mathématiques en TS1. Document d ... mathématiques en Terminale S1. Page 4. I) Diviseurs et multiples d'un entier ...



fascicule-de-Maths-5ieme-Cinquieme-Adem-Dakar.pdf

Cependant le contexte actuel de l'enseignement moyen au Sénégal est marqué



Recueil dexercices de Mathématiques Terminales S1-S3

0 par x x xh ln21. )( −+−= a) Calculer h (1) puis étudier les variations de h (On ne demande pas de calculer les limites) b) En déduire le signe de h(x) 



3e-Maths-fascicule-exos-Babacar-DIARRA.pdf

fascicule un bon manuel conforme au programme sénégalais de mathématiques. Parmi eux on peut citer les séries d'exercices proposés dans plusieurs lycées du ...



VISA BAC

MATHEMATIQUES. TERMINALE S2. Auteurs. • Oumar SAGNA inspecteur de mathématiques de l'enseignement moyen secondaire. • Moussa FAYE



Fascicule 2

APMEP. EVAPM Terminale. Fascicule 2 - Analyses des résultats r. Evaluation en mathématiques. Une étude exhaustive du savoir des élèves.



FINALE FASCICULE MATHS 3EME ok

Le paludisme est la maladie qui tue le plus au Sénégal. Sachant que 105% des malades du paludisme sont décédés et qu'ils représentent 75% de l'ensemble des cas 



math_6e.pdf

Fascicule MATHEMATIQUES – 6ème v10.17. Fascicule GRATUIT offert par le projet ADEM Dakar financé par l'AFD -. 7. NOMBRES DECIMAUX ARITHMETIQUES. Exercice 1.



fascicule-de-Maths-4ieme-Quaterieme-Adem-Dakar.pdf

Fascicule GRATUIT offert par le projet ADEM Dakar financé par l'AFD - actuel de l'enseignement moyen au Sénégal est marqué



MATH Tle D OK 2

MINISTERE DE L'EDUCATION NATIONALE. DE L'ALPHABETISATION ET DE LA PROMOTION. DES LANGUES NATIONALES. ANNALES. MATHÉMATIQUES. TERMINALE D 



La classe de Terminale L

http://www2.cndp.fr/archivage/valid/90599/90599-16287-20896.pdf Les élèves de Terminale ES peuvent choisir les mathématiques en.



m. abdou salam diop professeur de mathematiques au lycee de koki

CLASSE : TERMINALE L'1 et L2 Huit coureurs dont 3 sénégalais et 5 étrangers participent à une course dont les 3 premiers sont primés.



Mathématiques Cours exercices et problèmes Terminale S

22 juin 2013 ??? Très difficile – à essayer pour toute poursuite d'études exigeante en maths. Ces étoiles sont simplement un indicateur de la difficulté ...



14 CALCUL ALGEBRIQUE

Fascicule MATHEMATIQUES – 4ème v10.17. Fascicule GRATUIT offert par le projet ADEM Dakar financé par l'AFD -. 14. CALCUL ALGEBRIQUE. Exercice 1.



FINALE FASCICULE MATHS 3EME ok - Halwar

>FINALE FASCICULE MATHS 3EME ok - HalwarWeb[1ere édition conforme au nouveau programme des Mathématiques du premier cycle Octobre 2006] Page 2 PROGRAMME DEPROGRAMME DE MATHEMATIQUES EN

.
1

BURKINA FASO

Unité - Progrès - Justice

MINISTERE

DE L'EDUCATION NATIONALE,

DE

L'ALPHABETISATION ET DE LA PROMOTION

DES

LANGUES NATIONALES

ANNALES

MATHÉMATIQUES

TERMINALE D

2

AUTEURS :

Dieudonné KOURAOGO IES

Victor T. BARRY IES

Jean Marc TIENDREBEOGO IES

Clément TRAORE IES

Bakary COMPAORE IES

Abdou KABORE CPES

Maquette et mise en page :

OUEDRAOGO Joseph

ISBN :

Tous droits réservés :

© Ministre de l'Éducation Nationale, de l'Alphabétisation

Et de la Promotion des Langues nationales

Edition :

Direction Générale de la Recherche en Éducation et de l'Innovation Pédagogique 3 4

AVANT-PROPOS

La présente annale destinée à la classe de terminale D a pour but d'aider le professeur dans

son enseignement et le candidat au baccalauréat D de se préparer à l'épreuve de

mathématiques.

Cette annale comporte trois parties :

Première partie : résumé du cours par chapitre Deuxième partie : énoncés des épreuves du baccalauréat D Troisième partie : propositions de corrigés des épreuves. Les candidats ne tireront profit qu'en résolvant et trouvant par eux-mêmes les solutions sans

avoir recours aux corrigés. Les corrigés sont pour confirmer leurs justes réponses ou donner

d'autres pistes de résolution qui ne sont peut-être pas les leurs. Le succès résulte de l'effort et

de la méthode. Nous vous souhaitons du plaisir dans vos activités mathématiques et attendons vos critiques et suggestions pour des améliorations futures d'autres oeuvres.

Les auteurs

5 6

RAPPEL DE COURS

7

Chapitre : Les suites numériques

Objectifs :

· Mettre en oeuvre les énoncés admis sur les limites des suites ; · Connaître les limites et les comportements asymptotiques comparés des suites numériques.

1. Généralités sur les suites numériques

a) Définition

On appelle suite numérique, toute application

définie de ℕ (ou d'un sous ensemble de ℕ) vers ℝ. On la note ()∈ℕ (ou ()∈). b) Modes de détermination d'une suite

Une suite numérique peut être définie :

Soit par une formule explicite qui permet de calculer les termes en fonction de .

Exemples :

- Soit ()∈ℕ la suite définie par = 2 - 3. - Soit ()∈ℕ ∗ la suite définie par = Soit par la donnée d'un terme quelconque (en général son 1er terme) et d'une relation qui lie deux termes consécutifs (permettant de calculer un terme à partir du terme qui le précède).

Exemples :

- Soit ()∈ℕ la suite définie par = 3 - Soit ()∈ℕ ∗ la suite définie par = 4 + 5 , c) Sens de variation d'une suite Soit ()∈ℕ une suite numérique.

· Si pour tout

(resp. strictement croissante).

· Si pour tout

décroissante (resp. strictement décroissante).

· Si pour tout

∈ ℕ, = alors la suite ()∈ℕ est dite constante. d) Comparaisons sur les suites

Soient

()∈ℕ et ()∈ℕ deux suites numériques et 8 Si pour tout , ≥ (resp. > ) on dit que la suite () est supérieure () (resp. () est strictement supérieure à ()). Si pour tout () (resp. () est strictement inférieure à ()). On dit que la suite () est majorée s'il existe un réel ' tel que pour tout On dit que la suite () est minorée s'il existe un réel ( tel que pour tout Si la suite () est la fois minorée et majorée, on dit qu'elle bornée. Remarque : Une suite positive (resp. négative) est minorée par 0 (resp. majorée par 0).

2. Suites arithmétiques et suites géométriques

a) Suites arithmétiques

· Une suite

()∈ℕ est dite arithmétique s'il existe un réel ) tel que tout

Le réel

) s'appelle la raison de la suite ()∈ℕ.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . On a : Si le 1er terme est alors pour tout - 1)). Pour tous entier et , (

· Soit

()∈ℕ est une suite arithmétique de raison ). Si ) > 0 alors la suite () est croissante. Si ) < 0 alors la suite () est décroissante. Si ) = 0 alors la suite () est constante.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . La somme / des

1er termes est : /= + + + ⋯+ .

2. Si le 1er terme est alors la somme / des

1er termes est :

2. Si le 1er terme est - alors la somme / des ( + 1) 1er termes est : + 1) ×(-+ -) 2. 9 b) Suites géométriques

· Une suite

()∈ℕ est dite géométrique s'il existe un réel 2 tel que tout = 2.

Le réel

2 s'appelle la raison de la suite ()∈ℕ.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . On a : = 2. Si le 1er terme est alors pour tout = 2(). Pour tous entier et , ( = -2(-).

· Soit

()∈ℕ est une suite arithmétique de raison ). Si 2 > 1 alors la suite () est croissante. Si 0 < 2 < 1 alors la suite () est décroissante. Si 2 = 1 alors la suite () est constante. Si 2 < 0, () est une suite alternée

· Soit

()∈ℕ est une suite arithmétique de raison 2 et de 1er terme . La somme / des

1er termes est : /= + + + ⋯+ .

/= ×1 - 2

1 - 2.

Si le 1er terme est alors la somme / des

1er termes est :

/= ×1 - 2

1 - 2.

Si le 1er terme est - alors la somme / des ( + 1) 1er termes est : /= -×1 - 2

1 - 2.

3. Convergence des suites numériques

a) Définition Soit ()∈ℕ une suite numérique. On dit que la suite () est convergent si elle admet une limite finie 3. On note lim→8= 3. On dit que la suite () est divergente si elle n'est pas convergente. On a lim→8= +∞ ou lim→8= -∞. b) Limite par comparaison Soit ()∈ℕ une suite numérique et S'il existe une suite () telle que pour tout , ≥ et lim→8= +∞ alors lim→8= +∞. 10 S'il existe un suite (:) telle que pour tout alors lim→8= -∞. S'il existe un réel 3 tel que pour tout lim→8:= lim→8= 3, alors lim→8= 3. Si pour tout Si pour tout c) Limite des suites monotones Soit ()∈ℕ une suite numérique. Si () est croissante et majorée alors () converge. Si () est décroissante et minorée alors () converge. Si () est monotone et bornée alors () converge. d) Convergence des suites arithmétiques et géométriques

· Convergence des suites arithmétiques

Soit ()∈ℕ est une suite arithmétique de raison ) et de 1er terme . Si ) = 0 alors la suite () est convergente et lim→8= . Si ) ≠ 0 alors la suite () est divergente et lim→8= +∞, ) > 0 lim →8= -∞, >? ) < 0

· Convergence des suites géométriques

Soit ()∈ℕ est une suite arithmétique de raison ) et de 1er terme . Si 2 = 1 alors la suite () est convergente et lim→8= Si |2| < 1 alors la suite () est convergente et lim→8= 0. Si 2 > 1 alors la suite () est divergente et lim→8= +∞, > 0 lim →8= -∞, >? < 0 e) Opérations sur les limites des suites Soit ()∈ℕ et ()∈ℕ deux suites numériques. Les propriétés sur les limites de la somme ( + ), du produit (× ) et du quotient @A BA), si ≠ 0; sont les mêmes que celles sur les limites des fonctions numériques. f) Limites des suites définies à l'aide d'une fonction

· Suite de type

= C( Soit C une fonction définie sur ℝ et () une suite définie par = C( Si C admet une limite en +∞ alors lim→8= limD→8C(E).

· Suite de type

= C() Soit C une fonction continue sur un intervalle de ℝ et () une suite numérique définie par = C().

Si la suite

() est convergente et de limite 3, alors 3 = C(3). 11

Chapitre : Courbes paramétrées

Objectifs :

· mettre en évidence et exploiter les périodicités et les symétries éventuelles, · dresser le tableau de variations des fonctions coordonnées x et y, · calculer les coordonnées (x'(t), y'(t)) du vecteur dérivé, · connaître l'interprétation cinématique du vecteur dérivé.

1. Notion de courbes paramétrées

a) Définition Le plan est rapporté à un repère orthonormal (O,F,GHIH) et I est un intervalle de ℝ. Soit

E et J deux fonctions de la variable réelle K.

A tout réel

K, on associe le point '(K) définie par le vecteur

L'GGGGGGH(K)= E(K)FH+ J(K)IH.

L'ensemble (

M) des points '( E;J) du plan tels que :

OE = E(K)

J = J(K), K ∈ est appelée courbe paramétrée de paramètre K.

On note

'(K) ( E(K);J(K)) le point de paramètre K.

Le système

OE = E(K)

J = J(K) , K ∈ est la représentation paramétrique de la courbe (C) ou le système d'équations paramétrique de la courbe (C).

Exemples de représentations paramétriques

OE (K)= 2 - 3K J (K)= -4 + K, K ∈ ℝ PE (K)= Q RST J (K)= cosK, K ∈X-Y;YZ b) Propriétés des fonctions coordonnées et interprétation graphique Périodicité Soit (C) la courbe de représentation paramétrique : OE = E(K)

J = J(K),K ∈

Si E et J sont deux fonctions périodiques qui admettent le réel positif T pour période commune, alors la courbe (M) est obtenue complètement, en faisant varier K dans un intervalle d'amplitude T. 12 Parité

Dans un repère orthonormal (O,F,GHIH), on considère la courbe paramétrée (C) définie par :

'(K)OE = E(K)

J = J(K),K ∈ .

Lorsque les fonctions

E et J sont paires ou impaires sur I, les points '(K) et '(-K) ont des

positions relatives remarquables, et la courbe possède alors certaines propriétés de symétrie.

Tableau illustratif des propriétés de symétrie. Si

E(-K)=E(K)

J(-K)=-J(K)

E(-K)=-E(K)

J(-K)=J(K)

E(-K)=-E(K)

J(-K)=-J(K)

alors (]) est Symétrique par rapport à (^E). Symétrique par rapport à (^J). Symétrique par rapport à L.

Illustratio

nquotesdbs_dbs21.pdfusesText_27
[PDF] fascicule n°2 du cpc

[PDF] fase de un proyecto

[PDF] fases de la gestion de proyectos

[PDF] fases de la gestion de proyectos pdf

[PDF] fases de un proyecto de investigacion

[PDF] fases de un proyecto de software

[PDF] fases de un proyecto pdf

[PDF] fases de un proyecto pmi

[PDF] fases del proceso de gestion documental

[PDF] fashion management bruxelles

[PDF] fast food gare de l'est

[PDF] fatca

[PDF] fatigue apres conduite

[PDF] fatigue au volant que faire

[PDF] fatigue et conduite automobile