[PDF] PRODUIT SCALAIRE DANS LESPACE Les vecteurs et ne sont





Previous PDF Next PDF



1) Droites orthogonales 2) Orthogonalité dune droite et dun plan

Definition : - deux droites D et D' de vecteur directeurs u et v non nul sont orthogonales si les vecteursu et v sont orthogonaux.



PRODUIT SCALAIRE DANS LESPACE

Définition : Deux droites de l'espace sont orthogonales lorsque leurs Propriété : Une droite d est orthogonale à un plan P si et seulement si elle est.



DROITES ET PLANS DE LESPACE

I. Positions relatives de droites et de plans Définition : Deux droites de l'espace sont orthogonales lorsque leurs parallèles.



VECTEURS DROITES ET PLANS DE LESPACE

Tout vecteur colinéaire à {? est solution. XI. Projection orthogonale. 1) Projection orthogonale d'un point sur une droite. Définition : Soit 



PRODUIT SCALAIRE

Définition : Soit une droite d et un point M du plan. Le projeté orthogonal du point M sur la droite d est le point d'intersection H de la droite d avec la 



Les plans dexpériences

21 déc. 2009 Définition : La réponse est la grandeur mesurée lors de l'essai. ... plan d'expériences ou qu'un ensemble d'essais est orthogonal lorsque.



Droites et plans dans lespace

Définition 3 : Une droite D et un plan P sont orthogonaux si la droite D est orthogonale à deux droites sécantes du plan P.



Chapitre 24 : Applications orthogonales en dimension 2 et 3

24 juin 2016 Bien évidemment dans une base qui n'est pas orthonormale



Produit scalaire et plans dans lespace

11 juil. 2021 AB donc les droites d et (AB) sont orthogonales. 2.2 Droite et plan orthogonaux. Définition 3 : Un plan (P) de vecteurs directeurs (u1 u2) est ...



PRODUIT SCALAIRE DANS LESPACE

Les vecteurs et ne sont pas orthogonaux. II. Vecteur normal à un plan. 1) Définition et propriétés. Définition : Un vecteur non nul de l'espace est normal à 



[PDF] 1) Droites orthogonales 2) Orthogonalité dune droite et dun plan

Definition : Deux plans P et P' de E sont dits perpendiculaires si leurs vecteurs normaux sont orthogonaux Propriété : Un plan P est perpendiculaire à un plan 



[PDF] Orthogonalité de lespace - Meilleur En Maths

On dit que deux droites de l'espace sont orthogonales si leurs parallèles issues d'un point quelconque de l'espace sont perpendiculaires



Orthogonalité de deux droites dune droite et dun plan - Maxicours

Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires Si une droite (d) est orthogonale à deux droites 



Orthogonalité - Wikipédia

On emploie plutôt le terme de perpendiculaires pour deux droites orthogonales et sécantes On dit qu'une droite est orthogonale à un plan si elle est 



[PDF] ORTHOGONALITÉ DANS LESPACE

DÉFINITION : Une droite est orthogonale à un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan On note 



[PDF] DROITES ET PLANS DE LESPACE - maths et tiques

I Positions relatives de droites et de plans Définition : Deux droites de l'espace sont orthogonales lorsque leurs parallèles



[PDF] Orthogonalité et distances dans lespace 1 - KIFFELESMATHS

Définition : On considère une droite (D) orthogonale à un plan (P) Tout vecteur directeur de (D) est appelé vecteur normal au plan (P) Exemple :



Orthogonal hippodaméen en damier (plan) - Géoconfluences

9 sept 2022 · PDF Un plan orthogonal ou hippodaméen ou encore en damier est un plan dans lequel les axes se croisent à angle droit selon une maille 



[PDF] Chapitre 10 Orthogonalité et produit scalaire dans lespace

Deux droites d et d? de vecteurs directeurs respectifs u et u? sont orthogonale si et seulement si u u? = 0 2 Vecteur normal à un plan Définition On dit qu 



Orthogonalité dans lespace - Maths - Fiches de Cours pour Lycée

DEFINITION: deux droites de l'espace sont orthogonales quand en un point de Une droite D est orthogonale à un plan P si elle est orthogonale à toutes 

Definition : Deux plans P et P' de E sont dits perpendiculaires si leurs vecteurs normaux sont orthogonaux. Propriété : Un plan P est perpendiculaire à un plan 
  • C'est quoi un plan orthogonal ?

    Un plan orthogonal, ou hippodaméen, ou encore en damier, est un plan dans lequel les axes se croisent à angle droit selon une maille régulière. C'est l'une des formes les plus courantes d'organisation de l'espace, tant dans les espaces ruraux qu'urbains.9 sept. 2022
  • Comment savoir si un plan est orthogonal ?

    Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Si une droite (d) est orthogonale à deux droites sécantes du plan P, alors elle est orthogonale au plan P.
  • Quel est le projeté orthogonal ?

    On considère un plan P de l'espace dont on connaît un vecteur normal n et un point M extérieur au plan P. Le projeté orthogonal de M sur P est l'intersection du plan et de la droite de vecteur directeur n passant par M.
  • Définition : Deux droites de l'espace sont orthogonales si et seulement si il existe deux droites coplanaires qui leur sont parallèles et qui sont perpendiculaires entre elles.
1

PRODUIT SCALAIRE

DANS L'ESPACE

I. Produit scalaire de deux vecteurs

1) Définition

Soit et deux vecteurs de l'espace. A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C.

Définition :

On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P.

On a ainsi :

- si ou est un vecteur nul,

Exemple :

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

uvuAB=vAC=uv.uv.ABAC.0uv=uv .cos ;uvuv uv=´´ 2 uvAB DG ABAF ABAB a H 2

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace. Propriétés : Soit , et trois vecteurs de l'espace. - et sont orthogonaux.

Démonstration :

Il existe un plan P tel que les vecteurs et admettent des représentants dans P. Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent.

3) Expression analytique du produit scalaire

Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé . Alors .

Et en particulier : .

Démonstration :

En effet, on a par exemple dans le plan définit par le couple : , et .

On a en particulier : .

Exemple :

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace .

uvw 2 .uuu= ..uvvu = ...uvwu vuw +=+ ...kuvu kvk uv== kÎ.0uv=Ûuvuv x uy z x vy z ,,,Oijk .'''uvx xyy zz=++ 222
.uuuxyz==++ uvx iyj zkxiyjz k xxiixy ij xzi kyxjiy yjj yzj kzxkizyk jzzk k xxyyzz ;ij 2 .1iii== 2 .1jjj== ..0ijji == 2 222
.uuu xxy yzz xyz==++=++ ;,,CCBCDCG 3

Alors : et soit .

Alors .

Les vecteurs et ne sont pas orthogonaux.

II. Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.

Démonstration :

Elle est incluse dans la démonstration du corollaire qui suit. Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Corollaire : Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

Démonstration (exigible BAC) :

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P. - Démontrons la réciproque : 1 1 1 CE 10 01 0,50 DI 1 1 0,5 DI .111110,50,5CEDI =´+´-+´= CE DI nnnuv 4 Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et orthogonaux au vecteur . Soit une droite quelconque () de P de vecteur directeur .

Démontrons que () est orthogonale à .

peut se décomposer en fonction de et qui constituent une base de P (car non colinéaires).

Il existe donc deux réels x et y tels que .

Donc , car est orthogonal avec et .

Donc est orthogonal au vecteur .

Et donc est orthogonale à ().

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur est normal au plan

(ABG).

On considère le repère .

Dans ce repère : ,,,,.

On a ainsi :

, et , donc : Donc est orthogonal à deux vecteurs non colinéaires de (ABG), il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, soit et .

Déterminer un vecteur normal au plan (ABC).

d n 1 d 2 d uvuvn D w D d wuv wxuyv=+...0wnxu nyvn=+= nuvnw d D CF ;,,BBABC BF 1 0 0 A 0 0 0 B 0 1 0 C 0 0 1 F 0 1 1 G 0 1 1 CF 0 1 1 BG 1 0 0 AB .0011110 .0(1)10100 CFBG CFAB CF 11 2,3 21
AB 2 0 2 C 5

On a : et .

Soit un vecteur orthogonal au plan (ABC). Il est tel que : soit

Prenons par exemple, alors et .

Le vecteur est donc normal au plan (ABC).

2) Equation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé . Un plan P de vecteur normal non nul admet une équation cartésienne de la forme , avec ℝ. Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points tels que , avec ℝ, est un plan.

Démonstration (exigible BAC) :

- Soit un point de P. 2 1 3 AB 1 2 0 AC a nb c .0 .0 nAB nAC 230
20 abc ab 2230
2 330
2 2 bbc ab bc ab cb ab b=1 1c= a=2 2 1 1 n ;,,Oijk a nb c ax+by+cz+d=0 dÎ x My z ax+by+cz+d=0 dÎ A A A x Ay z 6 et sont orthogonaux avec . - Réciproquement, supposons par exemple que (a, b et c sont non tous nuls). On note E l'ensemble des points vérifiant l'équation

Alors le point vérifie l'équation .

Et donc E.

Soit un vecteur . Pour tout point , on a :

E est donc l'ensemble des points tels que .

Donc l'ensemble E est le plan passant par A et de vecteur normal .quotesdbs_dbs45.pdfusesText_45
[PDF] plan en damier new york

[PDF] incertitude relative exemple

[PDF] incertitude de mesure exercice corrigé

[PDF] incertitudes relatives

[PDF] progression 2012 mathématiques cycle 3

[PDF] plan radial

[PDF] incertitude absolue et relative

[PDF] plan linéaire

[PDF] incertitude type

[PDF] incertitude élargie

[PDF] incertitude de lecture

[PDF] l'air lutin bazar

[PDF] évaluation air ce2

[PDF] facteur d'élargissement

[PDF] séquence air cycle 2