[PDF] Introduction aux équations différentielles et aux dérivées partielles





Previous PDF Next PDF



Fiche savoir faire :

2ème cas : il y a plusieurs variables. Méthode. Exemple. Identifier les conditions d'existence comme dans le cas précédent. Pour cha- cune des conditions 



fiche 5.5: domaine et conditions - dexistence dune fonction

Il n'y a donc pas de conditions d'existence intrinsèques liées à ces fonctions (c'est souvent le cas quand on te propose ce genre d'exercices).



Domaine de définition dune fonction : solutions des exercices

En effet voici le tableau de signes relatif à la condition d'existence : x. - 4. 1 / 3. 3x ?1. -. -. -. 0. + x + 4. -. 0. +. +. +. 3x ?1 x + 4. +.



Espérance

la condition d'existence de l'espérance étant tout simplement la convergence absolue de cette intégrale généralisée ce qui vu la positivité de f



Sur le domaine dexistence dune fonction implicite définie par une

Dans ces conditions on peut appliquer le théorème suivant : « Si une fonction w=f(z) est analytique et uniforme sur une surface de Riemann R du plan z qui 



Chapitre 4. Théor`emes dexistence et dunicite

18 avr. 2011 1 Condition de Lipschitz. 2 Théor`eme du point fixe. 3 Théor`eme de Cauchy-Lipschitz. 4 Existence et unicite globale des solutions.



Introduction aux équations différentielles et aux dérivées partielles

pujo@math.univ-lyon1.fr 3.1.2 Problèmes avec conditions aux bords . ... et cherchons des conditions sur f pour avoir l'existence de solutions définies ...



COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin

Rappellons enfin le résultat bien connu sur les conditions d'optimalité de second ordre. (c'est à dire faisant intervenir la matrice hessienne). Théorème 2.20.



Introduction aux Équations aux Dérivées Partielles Étude théorique

4.4.4 Méthode de séparation des variables avec des conditions aux limites 5.3 Condition suffisante d'existence de la transformée de Laplace .



[PDF] Fiche 55: Domaine et Conditions dExistence dune fonction

Il n'y a donc pas de conditions d'existence intrinsèques liées à ces fonctions (c'est souvent le cas quand on te propose ce genre d'exercices)



[PDF] Conditions dexistence des radicaux - Fiche savoir faire :

Rassembler les conditions et expri- mer l'ensemble auquel doit appartenir la variable(une représentation à l'aide de la droite des réels est souvent utile !)



[PDF] Cours de Mathématique

CHAPITRE 5 FRACTIONS ALGÉBRIQUES 5 1 Exercices 1 Simplifier les fractions suivantes après avoir préciser les conditions d'existence :



[PDF] Définition Conditions dexistence et construction dintervalles de

Conditions d'existence et construction d'intervalles de confiance pour un paramètre de la distribution d'une variable aléatoire



[PDF] Domaine de définition dune fonction : solutions des exercices

1°/ la condition x ? ?3 sur la première droite ; 2°/ la condition x < ?2 ou x > 2 sur la deuxième droite ; 3°/ ces deux conditions simultanément sur la 



Déterminer la condition dexistence dune fraction rationnelle et la

29 mai 2020 · Se référer au dénominateur de la fraction Savoir factoriser VIDEOS SUR LA FACTORISATION Durée : 8:35Postée : 29 mai 2020



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

La notion de dérivée est une notion fondamentale en analyse Elle permet d'étudier les variations d'une fonction de construire des tangentes `a une courbe 



[PDF] Rappels sur les racines carrées

Définition 1 1 Soient d et c deux nombres positifs Nous dirons que c est la racine carrée de d si l'égalité suivante est satisfaite c2 = d



[PDF] Domaine et racines dune fonction

Définition: La racine d'une fonction est la valeur de x qui annule la fonction Une fonction peut ne pas avoir de racine ou bien peut en avoir une ou 



Domaine de définition - Mac for Math

Pour cela il suffit de résoudre les conditions d'existence Les 2 types de conditions rencontrées en ce début de cours correspondent à deux opérations 

  • Quelles sont les conditions d'existences ?

    On appelle condition d'existence, une condition sans laquelle un acte juridique n'existe pas et condition de validité, une condition sans laquelle un acte juridique n'est pas valable et peut donc être annulé (il est annulable).
  • Comment trouver les conditions d'existence d'une fraction ?

    Une fraction existe à condition que son dénominateur soit différent de zéro. 3+ a a Exemples: existe si a 0. En effet, la fraction 3 +0 3 = ? n'existe pas.
  • Quelle est la condition d'existence d'une valeur numérique ?

    Cette réponse est verifiée par des experts
    Pour qu'une valeur existe dans la cadre d'une division, le dénominateur doit être impérativement différent de 0. Dans ton exemple, il faut se concentrer sur 4x²-1 et trouver les valeurs qui sont égales à 0.
  • On rappelle tout d'abord ce qu'est l'ensemble de définition d'une fonction. Lorsque l'on définit une fonction, on l'écrit généralement sous la forme �� ? �� ? �� . Cela signifie que pour tout élément �� ? �� , on associe par la fonction �� un élément �� ? �� . Nous écrivons cela comme �� ( �� ) = �� .
Introduction aux équations différentielles et aux dérivées partielles Université Claude Bernard, Lyon ILicence Sciences, Technologies & Santé

43, boulevard 11 novembre 1918Spécialité Mathématiques

69622 Villeurbanne cedex, FranceL. Pujo-Menjouet

pujo@math.univ-lyon1.fr

Introduction

aux équations différentielles et aux dérivées partielles 1 2

Table des matières

I Equations différentielles 7

1 Méthodes de résolution explicite des équations différentielles "simples" 9

1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

1.2 Réduction à une équation du premier ordre . . . . . . . . . . . . . . . . . . . . . .

11

1.3 Intégration d"équations différentielles d"un certain type - quelques techniques . . .

12

1.3.1 Equations à variables séparées (ou séparables) . . . . . . . . . . . . . . . .

12

1.3.2 Equations homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1.3.3 Equations linéaires du premier ordre . . . . . . . . . . . . . . . . . . . . .

15

1.3.4 Equations de BERNOULLI . . . . . . . . . . . . . . . . . . . . . . . . .

17

1.3.5 Equations de LAGRANGE et de CLAIRAUT . . . . . . . . . . . . . . . .

17

1.3.6 Formulation générale -Equa. dif. totales - Facteurs intégrants . . . . . . . .

18

1.3.7 Equation des facteurs intégrants . . . . . . . . . . . . . . . . . . . . . . .

20

2 "Brève" théorie générale des équations différentielles 21

2.1 Problème de Cauchy en dimension finie . . . . . . . . . . . . . . . . . . . . . . .

21

2.2 Localisation des solutions du problème de Cauchy . . . . . . . . . . . . . . . . . .

22

2.3 Méthode d"approximation de Picard - Existence et Unicité locale . . . . . . . . . .

23

2.4 Unicité globale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

2.5 Points d"Unicité Locale et Globale d"un problème de Cauchy . . . . . . . . . . . .

25

2.6 Théorèmes d"existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

3 Equations différentielles d"ordre supérieur 29

3.1 Problèmes avec conditions initiales et conditions aux bords . . . . . . . . . . . . .

29

3.1.1 Problèmes avec conditions initiales . . . . . . . . . . . . . . . . . . . . .

29

3.1.2 Problèmes avec conditions aux bords . . . . . . . . . . . . . . . . . . . .

30

3.1.3 Equations homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

3.1.4 Opérateur différentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

3.1.5 Principe de substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

3.1.6 Dépendance et indépendance linéaire . . . . . . . . . . . . . . . . . . . .

32

3.1.7 Solution d"équa. diff. pour les solutions linéairement indép. d"équa. diff.

linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.8 Solutions générales d"équations nonhomogènes . . . . . . . . . . . . . . .

33

3.2 Réduction d"ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

3.3 Equation linéaire homogène avec coefficients constants . . . . . . . . . . . . . . .

35

3.3.1 Ordre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35
3

3.3.2 Ordre supérieur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

3.4 Coefficients indéterminés- Approche par superposition . . . . . . . . . . . . . . .

36

3.5 Coefficients indéterminés- Approche de l"annihilateur . . . . . . . . . . . . . . . .

37

3.5.1 Mise en facteurs d"opérateurs . . . . . . . . . . . . . . . . . . . . . . . .

37

3.5.2 Opérateur annihilateur . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

3.5.3 Coefficients indéterminés . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

3.6 Variations des paramètres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

3.6.1 Ordre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

3.6.2 Equations d"ordre supérieur . . . . . . . . . . . . . . . . . . . . . . . . .

40

3.7 Equation de Cauchy-Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

3.7.1 Equation homogène d"ordre 2 . . . . . . . . . . . . . . . . . . . . . . . .

41

3.8 Résoudre des systèmes d"équations linéaires par élimination . . . . . . . . . . . .

42

4 Séries solutions d"équations différentielles linéaires 43

4.1 Solution autour de points ordinaires . . . . . . . . . . . . . . . . . . . . . . . . .

43

4.1.1 Rappel sur les séries entières . . . . . . . . . . . . . . . . . . . . . . . . .

43

4.1.2 Solutions sous forme de séries entières . . . . . . . . . . . . . . . . . . .

44

4.2 Solutions autour des points singuliers . . . . . . . . . . . . . . . . . . . . . . . .

44

4.3 Deux équations spéciales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

5 Transformée de Laplace 47

5.1 Rappel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

5.2 Définition de la transformée de Laplace . . . . . . . . . . . . . . . . . . . . . . .

47

5.3 Transformée inverse et transformée de dérivées . . . . . . . . . . . . . . . . . . .

48

5.3.1 Transformée inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

5.3.2 Transformer une dérivée . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

5.4 Résoudre les équations différentielles linéaires . . . . . . . . . . . . . . . . . . . .

50

5.5 Théorème de translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

5.5.1 Translation sur l"axe dess. . . . . . . . . . . . . . . . . . . . . . . . . .

50

5.5.2 Translation sur l"axe dest. . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6 Propriétés additionnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.1 Multiplier une fonction partn. . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.3 Transformée d"une intégrale . . . . . . . . . . . . . . . . . . . . . . . . .

51

5.6.4 Equation intégrale de Volterra . . . . . . . . . . . . . . . . . . . . . . . .

52

5.6.5 Transformée de fonction périodique . . . . . . . . . . . . . . . . . . . . .

52

5.6.6 Fonction±-Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

6 Systèmes différentiels linéaires 53

6.1 Théorie préliminaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

6.1.1 Systèmes homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

6.1.2 Systèmes non-homogènes . . . . . . . . . . . . . . . . . . . . . . . . . .

55

6.2 Systèmes linéaires homogènes avec des coefficients constants . . . . . . . . . . . .

55

6.2.1 Valeurs propres et vecteurs propres . . . . . . . . . . . . . . . . . . . . .

55

6.3 Variation de la constante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57
4

6.3.1 Matrice fondamentale . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

6.3.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

6.3.3 Variation de la constante . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

6.4 Exponentielle d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

6.4.1 Systèmes homogènes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

58

6.4.2 Systèmes non homogènes . . . . . . . . . . . . . . . . . . . . . . . . . .

59

6.4.3 Utilisation de la transformée de Laplace . . . . . . . . . . . . . . . . . . .

59

II Equations aux dérivées partielles 61

7 Equation de la chaleur 63

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

7.2 Construction du modèle de la chaleur dans une time (1D) . . . . . . . . . . . . . .

64

7.2.1 Densité de l"énergie thermique . . . . . . . . . . . . . . . . . . . . . . . .

64

7.2.2 Energie de la chaleur . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

7.2.3 Conservation de l"énergie de la chaleur . . . . . . . . . . . . . . . . . . .

64

7.2.4 Température et chaleur spécifique . . . . . . . . . . . . . . . . . . . . . .

66

7.2.5 Energie thermique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

7.2.6 Loi de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66
5 6

Première partie

Equations différentielles

7

Chapitre 1

Méthodes de résolution explicite des

équations différentielles "simples"

1.1 Définitions

Donnons tout d"abord quelques définitions essentielles pour commencer sur de bonnes bases.

Définition 1

Equation différentielle ordinaire.Une équation différentielle ordinaire (EDO) est

une relation entre la variable réellet, une fonction inconnuet7!y(t)et ses dérivéesy0,y00, ...,

y (n)au pointtdéfinie par F(t;y(t);y0(t);y00(t);:::;y(n)(t)) = 0 (on notera par abusF(t;y;y0;y00;:::;y(n)) = 0)(1.1) On dit que cette équation est scalaire siFest à valeurs dansR. (N.B. : on pourra utiliserxde temps en temps au lieu det, i.e.y(t)ouy(x))

Définition 2

Equation différentielle normale.On appelle équation différentielle normale d"ordre ntoute équation de la forme y (n)=f(t;y;y0;:::;y(n¡1))(1.2) Donnons un exemple pour mettre les idées au clair.

Exemple 1

Equation du premier ordre sous la forme normale

y

0=f(t;y) (oudy

dt =f(t;y))(1.3)

Donnons maintenant une classification par linéarité. Une EDO du type (1.1) d"ordrenest linéaire

si elle a la forme suivante : a noter que (1) tous lesy(i)sont de degré1, et (2) tous les coefficients dépendent au plus dex 9

Exemple 2

Dire si les équations différentielles suivantes sont linéaires ou non linéaires, et donner

leur ordre (on justifiera les réponses). i:(y¡x)dx+ 4xdy= 0ii: y00¡2y0+y= 0iii:d3y dx 3+xdy dx

¡5y=ex

iv:(1¡y)y0+ 2y=exv:d2y dx

2+ siny= 0vi:d4y

dx

4+y2= 0

Définition 3

Solution.On appelle solution (ou intégrale) d"une équation différentielle d"ordren sur un certain intervalleIdeR, toute fonctionydéfinie sur cet intervalleI,nfois dérivable en

tout point deIet qui vérifie cette équation différentielle surI. On notera en général cette solution

(y;I).

SiIcontient sa borne inférieure®, (resp. sa borne inférieure¯), ce sont des dérivées à droite

(resp. à gauche) qui interviennent au pointt=®(resp.t=¯). Intégrer une équation différentielle

consiste à déterminer l"ensemble de ses solutions.

Définition 4

Soient(y;I)et(ey;eI)deux solutions d"une même équation différentielle. On dit que (ey;eI)est un prolongement de(y;I)si et seulement siI½eIeteyjI=y.

Définition 5

Solution maximale, solution globale.SoientI1etI2, deux intervalles surRtels que I

1½I2. On dit qu"une solution(y;I1)est maximale dansI2si et seulement siyn"admet pas

de prolongement(ey;eI)solution de l"équation différentielle telle queI1&eI½I2. On dit qu"une

solution(y;I1)est globale dansI2si et seulement siyadmet un prolongementeysolution définie sur l"intervalleI2tout entier.

Remarque 1

Toute solution globale sur un intervalleIest maximale surI, mais la réciproque est fausse.

Exemple 3

(voir figure)W y1 y2 I 10

1.2 Réduction à une équation du premier ordre

quotesdbs_dbs31.pdfusesText_37
[PDF] condition de germination des graines 6eme

[PDF] pour germer une graine a besoin

[PDF] tp de germination des graines pdf

[PDF] conditions germination graines pdf

[PDF] la germination des graines cours pdf

[PDF] les étapes de la germination pdf

[PDF] tp germination graines 6ème

[PDF] conditions de germination d'une graine de haricot

[PDF] définition du travail selon karl marx

[PDF] le travail selon hegel

[PDF] qu'est ce que le travail en philosophie

[PDF] le travail selon kant

[PDF] condition de l homme moderne fiche de lecture

[PDF] condition de l homme moderne epub

[PDF] réaction de précipitation exercices corrigés pdf