[PDF] COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin





Previous PDF Next PDF



Fiche savoir faire :

2ème cas : il y a plusieurs variables. Méthode. Exemple. Identifier les conditions d'existence comme dans le cas précédent. Pour cha- cune des conditions 



fiche 5.5: domaine et conditions - dexistence dune fonction

Il n'y a donc pas de conditions d'existence intrinsèques liées à ces fonctions (c'est souvent le cas quand on te propose ce genre d'exercices).



Domaine de définition dune fonction : solutions des exercices

En effet voici le tableau de signes relatif à la condition d'existence : x. - 4. 1 / 3. 3x ?1. -. -. -. 0. + x + 4. -. 0. +. +. +. 3x ?1 x + 4. +.



Espérance

la condition d'existence de l'espérance étant tout simplement la convergence absolue de cette intégrale généralisée ce qui vu la positivité de f



Sur le domaine dexistence dune fonction implicite définie par une

Dans ces conditions on peut appliquer le théorème suivant : « Si une fonction w=f(z) est analytique et uniforme sur une surface de Riemann R du plan z qui 



Chapitre 4. Théor`emes dexistence et dunicite

18 avr. 2011 1 Condition de Lipschitz. 2 Théor`eme du point fixe. 3 Théor`eme de Cauchy-Lipschitz. 4 Existence et unicite globale des solutions.



Introduction aux équations différentielles et aux dérivées partielles

pujo@math.univ-lyon1.fr 3.1.2 Problèmes avec conditions aux bords . ... et cherchons des conditions sur f pour avoir l'existence de solutions définies ...



COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin

Rappellons enfin le résultat bien connu sur les conditions d'optimalité de second ordre. (c'est à dire faisant intervenir la matrice hessienne). Théorème 2.20.



Introduction aux Équations aux Dérivées Partielles Étude théorique

4.4.4 Méthode de séparation des variables avec des conditions aux limites 5.3 Condition suffisante d'existence de la transformée de Laplace .



[PDF] Fiche 55: Domaine et Conditions dExistence dune fonction

Il n'y a donc pas de conditions d'existence intrinsèques liées à ces fonctions (c'est souvent le cas quand on te propose ce genre d'exercices)



[PDF] Conditions dexistence des radicaux - Fiche savoir faire :

Rassembler les conditions et expri- mer l'ensemble auquel doit appartenir la variable(une représentation à l'aide de la droite des réels est souvent utile !)



[PDF] Cours de Mathématique

CHAPITRE 5 FRACTIONS ALGÉBRIQUES 5 1 Exercices 1 Simplifier les fractions suivantes après avoir préciser les conditions d'existence :



[PDF] Définition Conditions dexistence et construction dintervalles de

Conditions d'existence et construction d'intervalles de confiance pour un paramètre de la distribution d'une variable aléatoire



[PDF] Domaine de définition dune fonction : solutions des exercices

1°/ la condition x ? ?3 sur la première droite ; 2°/ la condition x < ?2 ou x > 2 sur la deuxième droite ; 3°/ ces deux conditions simultanément sur la 



Déterminer la condition dexistence dune fraction rationnelle et la

29 mai 2020 · Se référer au dénominateur de la fraction Savoir factoriser VIDEOS SUR LA FACTORISATION Durée : 8:35Postée : 29 mai 2020



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

La notion de dérivée est une notion fondamentale en analyse Elle permet d'étudier les variations d'une fonction de construire des tangentes `a une courbe 



[PDF] Rappels sur les racines carrées

Définition 1 1 Soient d et c deux nombres positifs Nous dirons que c est la racine carrée de d si l'égalité suivante est satisfaite c2 = d



[PDF] Domaine et racines dune fonction

Définition: La racine d'une fonction est la valeur de x qui annule la fonction Une fonction peut ne pas avoir de racine ou bien peut en avoir une ou 



Domaine de définition - Mac for Math

Pour cela il suffit de résoudre les conditions d'existence Les 2 types de conditions rencontrées en ce début de cours correspondent à deux opérations 

  • Quelles sont les conditions d'existences ?

    On appelle condition d'existence, une condition sans laquelle un acte juridique n'existe pas et condition de validité, une condition sans laquelle un acte juridique n'est pas valable et peut donc être annulé (il est annulable).
  • Comment trouver les conditions d'existence d'une fraction ?

    Une fraction existe à condition que son dénominateur soit différent de zéro. 3+ a a Exemples: existe si a 0. En effet, la fraction 3 +0 3 = ? n'existe pas.
  • Quelle est la condition d'existence d'une valeur numérique ?

    Cette réponse est verifiée par des experts
    Pour qu'une valeur existe dans la cadre d'une division, le dénominateur doit être impérativement différent de 0. Dans ton exemple, il faut se concentrer sur 4x²-1 et trouver les valeurs qui sont égales à 0.
  • On rappelle tout d'abord ce qu'est l'ensemble de définition d'une fonction. Lorsque l'on définit une fonction, on l'écrit généralement sous la forme �� ? �� ? �� . Cela signifie que pour tout élément �� ? �� , on associe par la fonction �� un élément �� ? �� . Nous écrivons cela comme �� ( �� ) = �� .
COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin

COURS OPTIMISATION

Cours en Master M1 SITN

Ionel Sorin CIUPERCA

1

Table des matières

1 Introduction 4

2 Quelques rappels de calcul différentiel, analyse convexe et extremum 5

2.1 Rappel calcul différentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Quelques Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Quelques rappels sur le calcul différentiel . . . . . . . . . . . . . . . 6

2.1.3 Rappel formules de Taylor . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Quelque rappels sur le matrices carrées réelles . . . . . . . . . . . . 11

2.2 Convexité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Fonctions convexes, strictement convexes, fortement convexes . . . . 11

2.2.2 Exemples des fonctions convexes, strictement convexes et fortement

convexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Fonctions coercives . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Conditions nécéssaires et suffisantes de minimum . . . . . . . . . . . . . . 17

2.4 Existence et unicité d"un point de minimum . . . . . . . . . . . . . . . . . 21

3 Optimisation sans contraintes 23

3.1 Méthodes de relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Description de la méthode . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Cas particulier des fonctions quadratiques . . . . . . . . . . . . . . 27

3.2 Méthodes de gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Méthodes de gradient à pas optimal . . . . . . . . . . . . . . . . . . 29

3.2.2 Autres méthodes du type gradient . . . . . . . . . . . . . . . . . . . 30

3.3 La méthode des gradients conjugués . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Le cas quadratique . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Cas d"une fonctionJquelconque . . . . . . . . . . . . . . . . . . . 38

4 Optimisation avec contraintes 39

4.1 Rappel sur les multiplicateurs de Lagrange . . . . . . . . . . . . . . . . . . 40

4.2 Optimisation sous contraintes d"inégalités . . . . . . . . . . . . . . . . . . . 41

4.2.1 Conditions d"optimalité de premier ordre : multiplicateurs de Karush-

Kuhn-Tucker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Théorie générale du point selle . . . . . . . . . . . . . . . . . . . . . 49

2

4.2.3 Applications de la théorie du point selle à l"optimisation . . . . . . 51

4.2.4 Le cas convexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Algorithmes de minimisation avec contraintes . . . . . . . . . . . . . . . . 53

4.3.1 Méthodes de relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Méthodes de projection . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Méthodes de pénalisation exterieure . . . . . . . . . . . . . . . . . . 59

4.3.4 Méthode d"Uzawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3

Chapitre 1

Introduction

En généraloptimisersignifie le fait de chercher une configuration optimale d"un sys-

tème, c"est à dire, chercher la meilleure configuration parmi tous les configurations possibles

du système et ceci, par rapport à un critère donné. Pour décrire (et éventuellement résoudre) un problème d"optimisation nous utilisons la modélisation mathématique. La démarche de modélisation comporte 3 étapes : Etape 1.Choisir lesvariables de décision, qui sont les composantes du système sur lesquelles on peut agir. On supposera dans ce cours qu"il y a un nombre finit notén2IN

de variables de décision, chacune de ces variables étant un nombre réel. Alors les variables

de décision seront représentés par un vecteurx= (x1;x2;xn)T2IRn(vecteur colonne). Etape 2.Décrirel"étatdu système, étant donnée une configuration des variables de décision. Ceci revient mathématiquement à se donner une fonctionJ:IRn!IRqui s"appellefonction objectifoufonction coûtet que nous voulons rendre la plus petite possible ou la plus grande possible. Etape 3.Décrire lescontraintesque les variables de décision satisfont. Ceci revient à définir un ensemble de contraintesUIRnet imposer d"avoirx2U. Pour résumer on peut dire que pour décrire un problème d"optimisation on se donne

1. Une fonctionJ:IRn7!IR(fonction coût)

2. Un ensembleUIRn(ensemble des contraintes)

On cherche à minimiserJsurU, c"est à dire, on cherchex2Utel que

J(x) = minx2UJ(x)

ou équivalent

J(x)J(x);8x2U:

Motivation et exemples pratiques :en classe

4

Chapitre 2

Quelques rappels de calcul différentiel,

analyse convexe et extremum

2.1 Rappel calcul différentiel

2.1.1 Quelques Notations

1. Pour toutn2IN;IRndésigne l"espaceeuclidienIRIRIR( "produitnfois").

En général un vecteurx2IRnsera notéx= (x1;x2;xn)T(vecteur colonne).

2. On notee1;e2;enles éléments de labase canoniquedeIRn, oùeiest le vecteur

deIRndonné par : (ei)j=ij=0sij6=i

1sij=i;8i;j= 1;2n(2.1)

(ij=symboles deKronecker).

3. Pour tousx;y2IRnon note par< x;y >2IRleproduit scalairedexety, qui

est donné par < x;y >=nX i=1x iyi: Deux vecteursx;y2IRnsontorthogonaux(on noterax?y) si< x;y >= 0.

4. Pour toutx2IRnon note parkxk 0lanorme euclidiennedex, donnée par

kxk=p< x;x >=v uutn X i=1x 2i: Rappellons lespropriétés d"une norme(donc aussi de la norme euclidienne) : i)kxk=jjkxk 82IR;8x2IRn ii)kx+yk kxk+kyk 8x;y2IRn iii)k0k= 0etkxk>0six2IRn f0g. 5

5. Pour tousx2IRnetr >0on notera parB(x;r)laboule ouvertedu centrexet

rayonr, donnée par

B(x;r) =fy2IRn;kyxk< rg:

6. Si x(k) k2INest une suite dansIRnetxest un élément deIRnon dit quex(k) convergeversx(notéex(k)!x) sikx(k)xk !0. Rappellons que nous avons :x(k)!xsi et seulement six(k) i!xienIRoùx(k) i(respectivementxi) est lai-ème composante dex(k)(respectivementx).

7. SoitUIRn.

- On définitl"intérieurdeUcomme l"ensemble des élémentsx2Upour lesquels il exister >0tel queB(x;r)U. - On dit queUestouvertsi8x2U9r >0tel queB(x;r)U. - On dit queUestfermési pour tout suitefx(k)g Utel quex(k)!x2IRnon ax2U.

8. Sia;b2IRnon note[a;b]le sous-ensemble deIRndonné par

[a;b] =fa+t(ba)(1t)a+tb; t2[0;1]g: L"ensemble[a;b]est aussi appelléle segmentreliantaàb.

Remarques :

[a;b] = [b;a](Exo!) Sia;b2IRaveca < bon retrouve la notation[a;b]pour l"intervalle des nombres x2IRtels queaxb.

9. Rappellons aussi l"inégalité de Cauchy-Schwarz :

j< x; y >j kxk kyk 8x;y2IRn:

2.1.2 Quelques rappels sur le calcul différentiel

On considère dans cette partiemetndeux nombres deN(très souvent dans ce cours on auram= 1).

1. SoitUun sous-ensemble deIRnetf:U7!IRm.

On dit quefestcontinueenx2Usif(x(k))!f(x)pour toute suitex(k)U telle quex(k)!x. On dit quefest continue surUsifest continue en tout pointx2U. Remarque :Sif= (f1;f2;fm)avecf1;f2;fm:U!IRalorsfest continu enx2Usi et seulement sif1;f2;fmsont continues enx.

Pour tous les poins suivants on va supposer que

est un ouvert de IRnetfest une fonctionf: !IRm. 6

2. Pour toutx2

eth2IRnon note (quand9) @f@h (x) = limt7!01t [f(x+th)f(x)] (c"est ladérivée directionnelledefenxdans la directionh).

Remarques :

i)@f@0(x) = 0: ii)Sif= (f1;f2;fn)T2IRnavecf1;f2;fm: !IRalors @f@h (x) =@f1@h (x);@f2@h (x);@fm@h (x) T

3. Pour toutx2

et touti2 f1;2;;ngon note (quand9) @f@x i(x) =@f@e i(x) = limt7!01t [f(x+tei)f(x)] (c"est ladérivée partielledefenxpar rapport à la variablexi.)

En particulier, sin= 1on notef0(x) =@f@x

1(x) = limt!01t

[f(x+t)f(x)] = lim y!x1yx[f(y)f(x)]

4. Pour toutx2

on note (quand9)Jf(x) =lamatrice Jacobiennedefenxqui est un élément deMm;n(IR)définie par (Jf(x))ij=@fi@x j(x)2IR8i= 1;m;8j= 1;n: Legradientdefenxest défini comme la transposée de la matrice Jacoblenne de fenx: rf(x) = (Jf(x))T2 Mn;m(IR): Remarque importante :Dans le cas particulierm= 1(doncf: !IR) alors en considérant tout élément deMn;1comme un vector colonne deIRn, on va dire que rf(x)est le vecteur colonne rf(x) =@f@x 1@f@x

2;@f@x

n T 2IRn:

Rappellons la formule :

@f@h (x) =8x2

8h2IRn:

5. Sif:

!IR(icim= 1) on dit qu"un pointx2 est unpoint critiquepour la fonctionfsirf(x) = 0. 7

6. Pour toutx2

eti;j2 f1;2;ngon note (quand9) 2f@x i@xj(x) =@@x i @f@x j (x)2IRm dérivée partielle à l"ordre 2.

Notation :pouri=jon écrira@2f@

2xi(x)à la place de@2f@x

i@xi(x).

7. Dans le casm= 1on note pour toutx2

(quand9)r2f(x) =la matrice carrée 2 M n(IR)donnée par r2f(x) ij=@2f@x i@xj(x);8i;j= 1;2;n: (r2f(x)s"appelle aussila matrice Hessiennedefenx).

8. On dit quefest de classeCpsur

(on noteraf2Cp( )) pourp= 1oup= 2 si les dérivées partielles desfjusqu"à l"ordrepexistent et sont continues sur . Par extension on dit quefest de classeC0sur sifest continue sur

9. On a le Théorème de Schwarz : sif2C2(

)alors 2f@x i@xj(x) =@2f@x j@xi(x)8x2 ;8i;j= 1;n (c"est à dire, la matricer2f(x)est symmétrique).

10. (Lien entrer;Jfetr2) : Sif:

!IRest de classeC2alors r

2f(x) =Jrf(x) =rJf(x)8x2

(la matrice Hessienne defest le Jacobien du gradient defou le gradient de la

Jacobienne def).

11. (Composition) Soient

IRn; UIRmavec

;Uouvertsf: !IRm; g:U! IR pavecp2INetf( )U. Considérons la fonction composéegf: !IRp. i)Sifetgsont continues alorsgfest continue. ii)Sifetgsont de classeC1alorsgfest de classeC1et on a l"égalité matricielle J gf(x) =Jg(f(x))Jf(x)8x2

Conséquences :

i)Sim=p= 1alors r(gf)(x) =g0(f(x))rf(x): i)Sin=p= 1alors (gf)0(x) = : 8

Proposition 2.1.Nous avons

r

2f(x)h=r8x2

;8h2IRn:

où le premier gradient dans le membre de droite de l"égalité est considéré par rapport à la

variablex.

Démonstration.On a :

@@x i=@@x i nX j=1@f@x j(x)hj! =nX j=1@ 2f@x ixj(x)hj=r2f(x)h i:Quelques exemples importants :

1. Sif:IRn!IRmest une fonctionconstantealorsrf= 0etJf= 0. On a aussi

évidementr2f= 0dans le casm= 1.

2. Soitf:IRn!IRmdéfinie par

f(x) =Ax8x2IRn oùA2 Mm;n(IR)est une matrice donné (c"est à dire,fest une fonctionlinéaire).

Il est facile de voir qu"on a

J f(x) =A8x2IRn (la matrice Jacobienne est constante). Dans la cas particulierm= 1une fonction linéaire générale peut être écrite sous la forme f(x) =< a; x >8x2IRn oùa2IRnest un vecteur donné. Il est clair alors que rf=a et r

2f= 0:

3. Soitf:IRn!IRdonnée par

f(x) =< Ax; x >8x2IRn; oùA2 Mn(IR)est un matrice carrée, réelle, de taillen(c"est à dire,fest laforme quadratiqueassociée à la matriceA). Alors pour unp2 f1;2;ngfixé, on peut

écrire

f(x) =nX i;j=1A ijxixj=Appx2p+nX j=1;j6=pA pjxpxj+nX i=1;i6=pA ipxixp+nX i;j=1;i6=p;j6=pA ijxixj 9 ce qui nous donne @f@x p= 2Appxp+nX j=1;j6=pA pjxj+nX i=1;i6=pA ipxi=nX j=1A pjxj+nX i=1A ipxi= (Ax)p+(ATx)p:

Nous avons donc obtenu :

rf(x) = (A+AT)x;8x2IRn:

En utilisant la formuler2f=Jrfon déduit

r

2f(x) =A+AT;8x2IRn

(donc la hessienne defest constante). Remarque :En particulier, siAestsymmétrique(c"est à direA=AT) alors r< Ax; x >= 2Ax;8x2IRn: r

2< Ax; x >= 2A;8x2IRn:

2.1.3 Rappel formules de Taylor

Proposition 2.2.(sans preuve)

Soit

IRnouvert,f:

7!IR;a2

eth2IRntels que[a;a+h] . Alors :

1. Sif2C1(

)alors i)f(a+h) =f(a) +R1

0 dt

(formule de Taylor à l"ordre 1 avec reste intégral). ii)f(a+h) =f(a)+avec0< <1 (formule de Taylor - Maclaurin à l"ordre 1) iii)f(a+h) =f(a)++o(khk) (formule de Taylor - Young à l"ordre 1)

2. Sif2C2(

)alors i)f(a+h) =f(a)++R1

0(1t) dt

(formule de Taylor à l"ordre 2 avec reste intégral). ii)f(a+h) =f(a)++12 avec0< <1 (formule de Taylor - Maclaurin à l"ordre 2) iii)f(a+h) =f(a)++12 +o(khk2) (formule de Taylor - Young à l"ordre 2). Remarque :Dans la proposition précédente la notationo(khkk)pourk2INsignifie une expression qui tend vers 0 plus vite quekhkk(c"est à dire, si on la divise parkhkk, le résultat tend vers 0 quandkhktend vers 0). 10

2.1.4 Quelque rappels sur le matrices carrées réelles

Soitn2INetA2 Mn(IR)une matrice carrée réelle.

1. SoitC=l"ensemble des nombres complexes. On rappelle que2Cest unevaleur

propredeAs"il existex2Cnavecx6= 0tel queAx=x; on appellexvecteur propredeAassocié à la valeur propre.

2. On dit que la matriceAestsemi-définie positivesi< Ax;x >0;8x2IRn.

On dit queAestdéfinie positivesi< Ax;x > >0;8x2IRnavecx6= 0.

3. Rappellons que siAest symétrique alors toutes les valeurs propres deAsont réelles;

en plus il existenvecteurs propres deAappartenant àIRnformant une base ortho- normée enIRn.

4. Supposons que la matriceAest symétrique. Alors

< Ah; h >minkhk2;8h2IRn oùmin2IRest la plus petite valeur propre deA. Rémarquons que l"inégalité précédente devient égalité sihest un vecteur propre associé à la valeur propremin.

5. Supposons queAest symétrique. AlorsAest semi-définie positive si et seulement si

min0etAest définie positive si et seulement simin>0.

6.Abréviation :La notation SDP pour une matrice carrée rélle signifie "matrice sy-

métrique et définie positive" (elle ne signifie pas "matrice semi-définie positive" !).

2.2 Convexité

2.2.1 Fonctions convexes, strictement convexes, fortement convexes

Définition 2.3.Un ensembleUIRnest ditconvexesi8x;y2Uon a[x;y]U (quelque soit deux points dansU, tout le segment qui les unit est dansU). Définition 2.4.SoitUIRnun ensemble convexe etf:U!IRune fonction.

1. On dit quefestconvexesurUsi

f(ty+ (1t)x)tf(y) + (1t)f(x);8x;y2U;8t2[0;1]

2. On dit quefeststrictement convexesurUsi

f(ty+ (1t)x)< tf(y) + (1t)f(x);8x;y2Uavecx6=y;8t2]0;1[:

3. On dit quefestfortement convexesurUs"il existe >0tel que

f(ty+ (1t)x)tf(y) + (1t)f(x)t(1t)kyxk2;8x;y2U;8t2[0;1] 11

4. On dit quefestconcave(respectivementstrictement concave, respectivement

fortement concave) sifest convexe (respectivement strictement convexe, res- pectivement fortement convexe). Remarque :Il est facile de voir qu"on a : fortement convexe=)strictement convexe =)convexe. Les réciproques ne sont pas vraies en général; par exemple une application affinef(x) =Ax+best convexe (et aussi concave) mais elle n"est pas strictement convexe (ni strictement concave) donc elle n"est pas fortement convexe (ni fortement concave).

On a le résultat utile suivant :

Proposition 2.5.SoitUIRnun ensemble convexe,p2IN,f1;f2;;fp:U!IR des fonctions convexes et 1; 2;; ndes constantes strictement positives.

Posonsf=

1f1+ 2f2+ pfp. Alors on a :

1. La fonctionfest convexe (donc toute combinaison linéaire avec des coefficients stric-

tement positifs de fonctions convexes est convexe).

2. Si au moins l"une des fonctionsf1;;fpest strictement convexe alorsfest stric-

tement convexe.

3. Si au moins l"une des fonctionsf1;;fpest fortement convexe alorsfest fortement

convexe.

Démonstration.Laissée en exercice!Il est en général difficile de vérifier la convexité d"une fonction en utilisant uniquement

la définition (essayez avecf(x) =x2ou avecf(x) =x4!) Les propositions suivantes

donnent des critères de convexité, convexité stricte et convexité forte, plus faciles à utiliser

que les définitions respectives. Proposition 2.6.(caractérisation de la convexité) Soit

IRnouvert,U

avecUconvexe etf:

7!IR une fonction de classeC1.

Alors a)Les 3 propositions suivantes sont équivalentes :

1.fest convexe surU

2. f(y)f(x)+;8x;y2U

3.rfestmonotone surU, c"est à dire

08x;y2U: b)Si de plusfest de classeC2sur alorsfest convexe surUsi et seulement si 0;8x;y2U(2.2) 12 Démonstration.a)On montre ici l"équivalence entre 1), 2) et 3).

1) =)2) :Supposonsfconvexe; la définition de la convexité peut s"écrire

f(x+t(yx))f(x)t[f(y)f(x)] En fixantx;yen divisant partet en faisantttendre vers 0 (ce qui est possible cart2[0;1]) on obtient 2).

2) =)3) :De 2) on déduit

f(y)f(x)+;8x;y2U et aussi (en inversantxety) : f(x)f(y)+;8x;y2U En faisant la somme de ces 2 inégalités on obtient 3).

3) =)1) :Soientx;y2Ufixés. On introduit la fonctiong:I!IRdéfinie par

t2I!g(t) =f(ty+ (1t)x)2IR oùIest un intervalle ouvert qui contient[0;1]. Il est facile de voir quegest de classeC1 et on a g

0(t) =8t2I:

Soientt1;t22[0;1]avect1< t2. Alors

g

0(t2)g0(t1) ==

1t 2t1: Par hypothèse 3) le dernier term de l"égalité précédente est0, ce qui montre que la fonctiong0est une fonction croissante. On déduit alors quegest une fonction convexe sur [0;1], ce qui nous donne pour toutt2[0;1] : g(t1 + (1t)0)tg(1) + (1t)g(0) c"est à dire f(ty+ (1t)x)tf(y) + (1t)f(x) doncfest convexe. b)On suppose icif2C2( "=)" Supposons quefest convexe et montrons (2.2). Soith2IRnfixé et notons g:

7!IRla fonction donnée parg(x) =;8x2

. Nous avons en utilisant aussi la Proposition 2.1 : ==@g@h (x) = limt7!0t 13 ce qui nous donne = limt7!0t 2: Considérons maintenantx;y2Uarbitraires eth=yx. Commex+t(yx)2U8t2

[0;1], de l"égalité précédente on déduit à l"aide de la monotonie derfque

0, c"est à dire (2.2).

"(=" Supposons maintenant que (2.2) est satisfaite et montrons quefest convexe. Soient x;y2Ufixées arbitraires, et considérons la fonctiong1:

7!IRdonnée par

g

1(z) =8z2

. Alors =g1(x)g1(y) = avec2]0;1[(on a utilisé l"une des formules de Taylor).

D"autre part, nous avons

rg1(z) =r2f(z)(xy) et ceci nous permet de déduire, en utilisant aussi (2.2) : =0:

Ceci nous donne la monotonie derfdonc la convexité def.Proposition 2.7.(caractérisation de la convexité stricte)

Soit

IRnouvert,U

avecUconvexe etf:

7!IR une fonction de classeC1.

Alors a)Les 3 propositions suivantes sont équivalentes :

1.fest strictement convexe surU

2. f(y)> f(x)+;8x;y2Uavecx6=y

3.rfeststrictement monotone surU, c"est à dire

>08x;y2Uavecx6=y:quotesdbs_dbs31.pdfusesText_37
[PDF] condition de germination des graines 6eme

[PDF] pour germer une graine a besoin

[PDF] tp de germination des graines pdf

[PDF] conditions germination graines pdf

[PDF] la germination des graines cours pdf

[PDF] les étapes de la germination pdf

[PDF] tp germination graines 6ème

[PDF] conditions de germination d'une graine de haricot

[PDF] définition du travail selon karl marx

[PDF] le travail selon hegel

[PDF] qu'est ce que le travail en philosophie

[PDF] le travail selon kant

[PDF] condition de l homme moderne fiche de lecture

[PDF] condition de l homme moderne epub

[PDF] réaction de précipitation exercices corrigés pdf