[PDF] Un quadrilatère ABCD est un parallélogramme si et seulement si





Previous PDF Next PDF



COMMENT DEMONTRER……………………

Propriété :Si deux droites coupées par une sécante déterminent des angles alternes-internes égaux alors elles sont parallèles. Donc les droites (AB) et (CD) 



Calcul vectoriel – Produit scalaire

Les droites (AB) et (CD) sont perpendiculaires si et seulement si les vecteurs. AB et CD sont orthogonaux. Si u est un vecteur directeur de la droite alors 



Un quadrilatère ABCD est un parallélogramme si et seulement si

6 nov. 2017 — Deux droites (AB) et (CD) sont parallèles si et seulement si



Démontrer quun point est le milieu dun segment Démontrer que

Démontrer que deux droites sont parallèles à une même troisième droite alors elles sont parallèles entre elles. ... AB = CD et AD = BC donc. ABCD est un.



Sujet et corrigé mathématiques bac s obligatoire

https://www.freemaths.fr/corriges-par-theme/bac-s-mathematiques-amerique-du-nord-2018-obligatoire-corrige-exercice-3-geometrie-dans-l-espace.pdf



Première S - Colinéarité de deux vecteurs

Les droites (AB) et. (CD) sont-elles parallèles ? Réponse : AB ( 5 – 1 ; 2 – 3 ). ( 4 ; –1). CD ( 10 – 



Les vecteurs

et (CD) sont parallèles. Ainsi il suffit de trouver un nombre réel k tel que. CD=k AB pour démontrer que les droites (AB).



TRANSLATION ET VECTEURS

Réciproquement : Les côtés opposés d'un parallélogramme sont parallèles et de même longueur donc les vecteurs AB. et CD.



VECTEURS ET REPÉRAGE

- Un repère est dit orthonormé s'il est orthogonal et si ?et ? sont de norme 1. TP info : Lectures de coordonnées : http://www.maths-et-tiques.fr/telech/ 



Le Produit Scalaire – 1ère spé maths

c) Les droites (AB) et (CD) sont-elles parallèles ? Définition : On appelle produit scalaire de deux vecteurs non nuls ?u et ?v le.



Les droites (AB) et (CD) sont-elles parallèles - O MATHIMATIKOS MAS

Les droites (AB) et (CD) sont-elles parallèles ? Décomposition de vecteurs pour démontrer un alignement de points · Simplifier des expressions 



[PDF] VECTEURS ET DROITES - maths et tiques

seulement si ab'? a'b = 0 Démonstration : Les droites d'équations ax + by + c = 0 et a'x + b' y + c' = 0 sont parallèles si et seulement si leur vecteur 



[PDF] VECTEURS ET REPÉRAGE - maths et tiques

Propriétés : 1) Dire que les droites ( ) et ( ) sont parallèles revient à dire que les vecteurs HHHHH? et HHHHH? sont colinéaires 2) Dire que 



[PDF] Première S - Colinéarité de deux vecteurs - Parfenoff org

Les droites (AB) et (CD) sont-elles parallèles ? Réponse : AB ( 5 – 1 ; 2 – 3 ) ( 4 ; –1) CD ( 10 – 





[PDF] Vecteurs droites et plans dans lespace - Lycée dAdultes

11 juil 2021 · Une droite est parallèle à un plan si et seulement si elle est parallèle à une droite de ce plan • Deux plans sont parallèles si et seulement 



[PDF] Les droites (AB) et ? sont coplanaires si elles sont parallèles ou

on a = + 3 donc est coplanaire avec les vecteurs et donc la droite (d) est parallèle au plan ( ; ) b) Déterminer une représentation paramétrique de la droite 



[PDF] Droites et plans de lespace - Pierre Lux

Dire que les droites AB et CD sont parallèles revient à dire que les vecteurs AB et CD sont colinéaires c'est à dire qu'il existe k ??* tel 



[PDF] Géométrie vectorielle dans le plan et dans lespace Niveau

On dit que les vecteurs ??? et ?? sont orthogonaux si les droites (AB) et (CD) sont perpendiculaires Propriété 8 : Deux vecteurs ??? et ?? 



[PDF] Les vecteurs - Labomath

Deux vecteurs sont égaux lorsqu'ils ont même longueur même direction et même sens C'est pour cette raison qu'on représente les vecteurs par des flèches Les 

  • Comment justifier que les droites AB et CD sont parallèles ?

    Prouver que les droites (AB) et (CD) sont parallèles. On sait que : (AB) ? (BC) et (CD) ? (BC). Si deux droites sont perpendiculaires à une même troisième droite alors elles sont parallèles. Donc : (AB) // (CD).
  • Comment savoir si des droites sont parallèles avec des vecteurs ?

    Propriété : Les droites d'équation ax + by + c = 0 et a'x + b' y + c' = 0 sont parallèles si et seulement si ab'? a'b = 0. ( )= 0 soit encore : ab'? a'b = 0 .
  • Comment justifier que deux droites sont parallèles ?

    Si deux droites parallèles coupées par une sécante forment deux angles alternes-internes, alors ces angles sont de même mesure. La réciproque à cette règle est également vraie : Si deux angles alternes-internes de même mesure sont définis par deux droites et une sécante, alors ces deux droites sont parallèles.
  • Somme de vecteurs de même origine
    Soient deux vecteurs et . On choisit des représentants A B ? de et A C ? de de même origine. Alors le vecteur somme u ? + v ? est le vecteur A D ? où est tel que ABDC est un parallélogramme.

Lycée JANSON DE SAILLY06 novembre 2017

VECTEURS DU PLAN2nde10

INOTION DE VECTEUR

1PARALLÉLOGRAMME

DÉFINITION

Un quadrilatèreABCDest un parallélogramme si, et seulement si ses diagonales ont le même milieu

A B CD OAB C D O parallélogramme aplati

PROPRIÉTÉS

— Un quadrilatèreABCDest un parallélogramme si, et seulement si (AB)//(DC) et (AD)//(BC). — Dans un parallélogramme les côtés opposés ont la même longueur.

REMARQUE

Dire que dans un quadrilatère, il y a deux côtés opposés parallèles et de même longueur ne suffit pas pour

conclure que ce quadrilatère est un parallélogramme. A B DC Dans le quadrilatèreABCDnous avons (AB)//(CD) etAB=CD, pourtantABCDn"est pas un parallélogramme.

2SENS ET DIRECTION

AB — Lorsque deux droites sont parallèles, on dit qu"elles ont même direction. — Une direction étant indiquée par la donnée d"une droite (AB), il y a deux sens de parcours dans cette direction : soit deAversB, soit deBversA.

A. YALLOUZ(MATH@ES)Page 1 sur19

Lycée JANSON DE SAILLY06 novembre 2017

VECTEURS DU PLAN2nde10

3TRANSLATION

A M N PQ F1 B R S TU F2

Le glissement qui permet d"obtenir la figureF2à partir de la figureF1peut être décrit de façon précise par

trois caractères : — ladirectiondu glissement est donnée par la droite(AB);

— lesensdu glissement est celui deAversB;

— ladistancedu glissement est égale à la longueur du segment[AB]. On dit que la figureF2est l"image de la figureF1par la translation de vecteur# »AB.

REMARQUE

Les vecteur

# »NSet# »PTsont aussi des vecteurs de la translation de vecteur# »AB, on dit qu"ils sont égaux. On

note alors :# »AB=# »NS=# »PT

DÉFINITION

SoientAetBdeux points du plan.

[AD] et [BC] aient le même milieu. Cette translation est la translation de vecteur# »AB.

Cas général

A CD B O ABDCest un parallélogrammeCas particuler oùA,BetCsont alignésAB CD O

ABDCest un parallélogramme aplati

IIVECTEURS

On le note# »AB.

1ÉGALITÉ DE DEUX VECTEURS

Deux vecteurs sont égaux s"ils sont associés à la même translation.

A. YALLOUZ(MATH@ES)Page 2 sur19

Lycée JANSON DE SAILLY06 novembre 2017

VECTEURS DU PLAN2nde10

DÉFINITION

AB CD A,B,CetDsont quatre points du plan. Les définitions suivantes sont équivalentes :

# »AB=# »CDsi, et seulement si,Dest l"image du pointCpar la translation de vecteur# »AB.

—# »AB=# »CDsi, et seulement si, les segments [AD] et [BC] ont le même milieu. —# »AB=# »CDsi, et seulement si,ABDCest un parallélogramme.

EXEMPLE:LES TROIS PARALLÉLOGRAMMES

ABCDetABEFsont deux parallélogrammes. Montrons queDCEFest un parallélogramme. A B C D EF —ABCDest un parallélogramme alors,# »AB=# »DC. —ABEFest un parallélogramme alors,# »AB=# »FE.

Par conséquent,

# »DC=# »FEdonc le quadrilatèreDCEFest un parallélogramme.

2REPRÉSENTATION D"UN VECTEUR

Devant des égalités du type# »AB=# »DC=# »FE= ···, on dit que les vecteurs# »AB,# »DC,# »FE, ... sont des

représentants du vecteur#»u:#»u=# »AB=# »DC=# »FE=···

Le vecteur

# »AA=# »BB=···est appelé le vecteur nul, noté#»0.

Soit O un point du plan. Pour tout vecteur#»u, il existe un un pointMunique tel que#»u=# »OM.

#»u # »OM OM

A. YALLOUZ(MATH@ES)Page 3 sur19

Lycée JANSON DE SAILLY06 novembre 2017

VECTEURS DU PLAN2nde10

Si

#»un"est pas le vecteur nul, les pointsOetMsont distincts. Le vecteur#»uest caractérisé par :

— Sa direction : c"est celle de la droite

(OM).

— Son sens : c"est le sens deOversM.

— Sa norme notée??#»u??: c"est la distanceOM.

IIIADDITION VECTORIELLE

1SOMME DE DEUX VECTEURS

Soit trois pointsA,BetC.

Si on applique la translation de vecteur# »ABsuivie de la translation de vecteur# »BC, on obtient la translation

de vecteur# »AC. Le vecteur# »ACest la somme des vecteurs# »ABet# »BC # »AC=# »AB+# »BC AB C

RELATION DECHASLES

Quels que soient les pointsA,BetCon a :

AB+# »BC=# »AC

RÈGLE DU PARALLÉLOGRAMME

La somme# »OA+# »OBest le vecteur# »OMtel queOAMBest un parallélogramme.

CONSTRUCTION DE LA SOMME DE DEUX VECTEURS

Relation de Chasles

#»u #»v#»u+#»v ABC

Règle du parallélogramme

#»u #»v#»u+#»v OAB M

PROPRIÉTÉS ALGÉBRIQUES

Quels que soient les vecteurs#»u,#»vet#»w#»u+#»v=#»v+#»u;#»u+#»0=#»0+#»u=#»u;?#»u+#»v?+#»w=#»u+?#»u+#»w?

A. YALLOUZ(MATH@ES)Page 4 sur19

Lycée JANSON DE SAILLY06 novembre 2017

VECTEURS DU PLAN2nde10

2DIFFÉRENCE DE DEUX VECTEURS

OPPOSÉ D"UN VECTEUR

L"opposé d"un vecteur#»uest le vecteur noté?-#»u?tel que#»u+?-#»u?=#»0. #»u -#»u

CONSÉQUENCE

L"opposé du vecteur# »ABest le vecteur# »BA:-# »AB=# »BA ?PREUVE

D"après la relation de Chasles :

# »AB+# »BA=# »AA=#»0

DÉFINITION

Étant donné deux vecteurs#»uet#»vla différence#»u-#»vest le vecteur#»u+?-#»v?.

#»u #»v -#»v #»u-#»v #»u-#»v ACB MN Quels que soient les pointsA,BetC,# »BC=# »AC-# »AB

IVMULTIPLICATION D"UN VECTEUR PAR UN RÉEL

1PRODUIT D"UN VECTEUR PAR UN RÉELk

#»u -23 #»u 5 4 #»u

A. YALLOUZ(MATH@ES)Page 5 sur19

Lycée JANSON DE SAILLY06 novembre 2017

VECTEURS DU PLAN2nde10

DÉFINITION

Soit#»uun vecteur non nul (#»u?=#»0) etkun réel non nul (k?=0). Le produit du vecteur#»upar le réelk, noték#»uest le vecteur caractérisé par : — sa direction :k#»ua la même direction que le vecteur#»u;

Cas oùk>0Cas oùk<0

# »OM=k #»u # »OA= #»u OA M # »OM=k #»u # »OA=#»u OA M — son sens : le vecteurk#»uale même sens que le vecteur#»u;

— sanorme:lanormeduvecteurk#»uestégale

au produit de la norme du vecteur#»upar le réelk??k#»u??=k×??#»u??— son sens : le vecteurk#»uest de sens opposé au sens du vecteur#»u;

— sanorme:lanormeduvecteurk#»uestégale

au produit de la norme du vecteur#»upar l"opposé du réelk k#»u??=-k×??#»u??

Ce qui s"écrit de façon générale

?k#»u??=|k|×??#»u??et se lit :

"la norme du vecteurk#»uest égale au produit de la norme du vecteur#»upar la valeur absolue du réelk»

Lorsque#»u=#»0 ouk=0, on convient quek#»u=#»0 : ainsi, l"égaliték#»u=#»0 ne peut se produire que

lorsque#»u=#»0 ouk=0.

REMARQUE

SoitAetBdeux points distincts, etkun réel donné. Il existe un unique pointMdéfini par la relation# »AM=k# »AB:

—Mest un point de la droite (AB)

—Ma pour abscissekdans le repère (A;B) d"origineA

M?[Ax)

k?0M?[AB]

0?k?1M?[By)

k?1 xA By

2PROPRIÉTÉS ALGÉBRIQUES

Pour tous vecteurs#»uet#»vet pour tous réelsketk?: k?#»u+#»v?=k#»u+k#»v; (k+k?)#»u=k#»u+k?#»u;k#»u=#»0??k=0 ou#»u=#»0

3VECTEURS COLINÉAIRES

DÉFINITION

Deux vecteurs#»uet#»vsont dits colinéaires s"il existe un réelktel que#»u=k#»vou#»v=k#»u

A. YALLOUZ(MATH@ES)Page 6 sur19

Lycée JANSON DE SAILLY06 novembre 2017

VECTEURS DU PLAN2nde10

REMARQUES

— Comme

#»0=0#»u, le vecteur nul est colinéaire à tout vecteur. — Deux vecteurs non nuls sont colinéaires si, et seulement si, ils ont la même direction.

4APPLICATIONS GÉOMÉTRIQUES

AVEC LES MILIEUX

MILIEU D"UN SEGMENT

Étant donné un segment [AB]. Chacune des propriétés suivantes caractérise le milieuIdu segment

[AB] :

1)# »AI=# »IBou 2)# »I A+# »IB=#»0 ou 3)# »AB=2# »AI.

4) Pour tout pointMdu plan# »MA+# »MB=2# »MI.

?DÉMONSTRATION

1. L"égalité

# »AI=# »IBcaractérise le milieuIdu segment [AB] (conséquence de la définition de l"égalité de

deux vecteurs).

2.Imilieu du segment [AB]??# »AI=# »IB??# »I A=-# »IB??# »I A+# »IB=#»0

3.Imilieu du segment [AB]??# »AI=# »IB??2# »AI=# »AI+# »IB??2# »AI=# »AB

4. SiIest le milieu du segment [AB], alors pour tout pointM

MA+# »MB=?# »MI+# »I A?

+?# »MI+# »IB? =2# »MI+# »I A+# »IB? =#»0=2# »MI

Réciproquement, la propriété

# »MA+# »MB=2# »MIétant vraie pour tout pointMon peut l"appliquer au pointI. Soit :# »I A+# »IB=2#»II=#»0

Ce qui prouve queIest le milieu du segment [AB]

THÉORÈME

SoitABCun triangle,IetJles milieux respectifs de [AB] et [AC] alors# »BC=2#»IJ ?DÉMONSTRATION BC=# »BA+# »AC=2# »I A+2# »AJ=2?# »I A+# »AJ? =2#»IJ

PARALLÉLISME ET ALIGNEMENT

— Deux droites (AB) et (CD) sont parallèles si, et seulement si, les vecteurs# »ABet# »CDsont colinéaires.

— Trois pointsA,BetCsont alignés si, et seulement si, les vecteurs# »ABet# »ACsont colinéaires.

?DÉMONSTRATION

— Si (AB)//(CD) alors, les vecteurs# »ABet# »CDont la même direction donc ils sont colinéaires.

A. YALLOUZ(MATH@ES)Page 7 sur19

quotesdbs_dbs12.pdfusesText_18
[PDF] exercice calculer les coordonnées du milieu d un segment

[PDF] exercices corrigés de stéréoisomérie

[PDF] exercices corrigés en stéreochimie

[PDF] projection de newman exercices corrigés

[PDF] cisco 8851 mode d'emploi

[PDF] comment configurer un telephone ip

[PDF] configuration telephone ip cisco pdf

[PDF] configuration telephone ip packet tracer

[PDF] confiture mirabelle

[PDF] confiture pdf

[PDF] recette confiture de mangues facile

[PDF] chimie des confitures

[PDF] tableau pectine fruit

[PDF] ph confiture

[PDF] toute action collective constitue-t-elle un mouvement social ?