[PDF] Les coniques - Lycée dAdultes





Previous PDF Next PDF



Chapitre7 : Coniques

4.0 International ». https://www.immae.eu/cours/. Chapitre7 : Coniques On dit que C est une conique lorsqu'il existe un repère ? de ? dans.



Les coniques - Lycée dAdultes

19 sept. 2021 Les coniques doivent leur nom à la section d'un cône par un plan. Les grecs leur avaient donné comme nom : ellipse hyperbole



Coniques

12 déc. 2011 1 Cours. Nous étudierons ici les coniques exclusivement du point de ... On appelle conique de directrice D de foyer F et d'excentricité e ...



Coniques cours

http://mathsfg.net.free.fr/terminale/TSTI2010/coniques/coniquescoursTSTI.pdf



LES CONIQUES

L'étude des tangentes aux coniques est intéressante en tant que synthèse des cours de géométrie d'algèbre et d'analyse. Nous utiliserons également les 



1B-coniques-cours et exercices.pdf

LES CONIQUES. Table des matières. COURS. 1) Différentes approches des « coniques »… ……………….…… page 2. 2) Equation focale d'une conique …………………………….…. page 4.



1 Équations cartésiennes des coniques

1.2 Introduction aux coniques Les coniques représentent une partie très ancienne des mathématiques : on doit le ... comme nous le ferons dans ce cour.



MATHEMATIQUES Terminale C

Ce cours est une partie du cours sur les coniques. 3.1- Prérequis : - Définition générale des coniques ;. - Définition et propriétés des projections et 



Coniques quadriques et formes quadratiques

que l'on se fixe l'équation d'une même conique dans le plan est donnée par un variables que l'on effectue au cours du calcul correspondent à des ...



Résumé de cours : Les Coniques. 1´Equation implicite.

Résumé de cours : Les Coniques. MPSI-Maths. Mr Mamouni : myismail1@menara. Une conique[1] est définie par une équation de ... Application aux coniques.



[PDF] Chapitre7 : Coniques - Melusine

On dit que C est une conique lorsqu'il existe un repère ? de ? dans lequel C admet une équation du type ax2 + 2?xy + by2 + 2cx + 2dy + e = 0 avec (a ? b c 



[PDF] Les coniques - Lycée dAdultes

19 sept 2021 · Les coniques doivent leur nom à la section d'un cône par un plan Les grecs leur avaient donné comme nom : ellipse hyperbole parabole



[PDF] 1B-coniques-cours et exercicespdf

1) Différentes approches des « coniques » Au cours d'analyse vous avez vu que les courbes représentatives des fonctions du second degré 2 f (x) ax bx c



[PDF] Coniques

12 déc 2011 · Questions de cours : 1 Donner la définition par foyer directrice et excentricité d'une conique 2 Rappeler quelles sont les coniques 



[PDF] Les coniques

Les coniques sont des courbes planes Elles sont caractérisées par le fait que leur équation dans le plan en géométrie analytique est de la formeP(x 



[PDF] Chapitre 14 - Coniques - Cours - Jérôme Von Buhren

Les coniques sont des courbes du plan dont plusieurs définitions coexistent Pendant l'antiquité Euclide Aris- tée et Apollonius considèrent qu'une conique 



[PDF] Coniques - ENS Rennes

Coniques Salim Rostam Complément d'algèbre pour l'agrégation ENS Rennes Référence : Mercier Cours de géométrie Chapitres 20 21 22



[PDF] Coniques - Licence de mathématiques Lyon 1

On consid`ere une droite D un point F non situé sur D un réel strictement positif e On appelle conique (propre) de droite directrice D de foyer F et d' 



[PDF] coniquespdf - Cours de mathématiques L1/L2/L3/CPGE

Lorsque e varie les coniques se déforment continûment depuis les ellipses jusqu'aux hyperboles F P EXERCICE : ? Tracer les coniques d'équation polaire ci- 



[PDF] Résumé de cours : Les Coniques 1´Equation implicite

Résumé de cours : Les Coniques MPSI-Maths Une conique[1] est définie par une équation de On appelle conique de directrice D de foyer F

:
Les coniques - Lycée dAdultes DERNIÈRE IMPRESSION LE19 septembre 2021 à 15:32

Les coniques

Table des matières

1 Étude analytique2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Coniques dépourvues de centre. . . . . . . . . . . . . . . . . . . . . 2

1.3 Coniques à centre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Étude géométrique7

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Construction d"une conique. . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Excentricité et foyers. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Éléments caractéristiques. . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Parabole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Ellipse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.3 Hyperbole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Définition bifocale d"une ellipse et d"une hyperbole. . . . . . . . . 14

3 Équation paramétrique d"une conique15

3.1 Paramétrage d"une ellipse. . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Affinité orthogonale. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Construction de la tangente à une conique. . . . . . . . . . . . . . . 18

3.4 Équation d"une hyperbole rapportée à ses asymptotes. . . . . . . . 19

PAULMILAN1TERMINALE C PGRM1975

1 Étude analytique1.1 Définition

Définition 1 :On appelle conique les courbes du second degré c"est à dire les courbes dont les points M(x,y), dans un repère orthonormé, vérifient l"équation implicite suivante : ax

2+by2+2cx+2dy+e=0 avec|a|+|b| ?=0

Les coefficientsa,b,c,deteétant réels

Remarque :

leur avaient donné comme nom : ellipse, hyperbole, parabole. •La condition|a|+|b| ?=0 signifie que les coefficientsaetbne peuvent être nuls en même temps ce qui marque le second degré.

1.2 Coniques dépourvues de centre

Théorème 1 :Lorsque le produitab=0 avec|a|+|b| ?=0, on a si :

1)a=0 etc=0 suivant le signe deΔ?1=d2-be

•Δ?1>0deux droites horizontalesd"équationy=y1ety=y2 •Δ?1=0une droite horizontaled"équationy=y0

•Δ?1<0 aucun point

2)a=0 etc?=0une paraboled"axe parallèle à(Ox)du typeY2=2pX

3)b=0 etd=0 suivant le signe deΔ?2=c2-ae

•Δ?2>0deux droites verticalesd"équationx=x1etx=x2

•Δ?2=0une droite verticaled"équationx=x0

•Δ?1<0 aucun point

4)b=0 etd?=0une paraboled"axe parallèle à(Oy)du typeY=αX2

Démonstration :On détaillera les cas aveca=0. Les cas avecb=0 se démontrent pareillement.

1)a=0 etc=0, on obtient alors :by2+2dy+e=0. C"est une équation

réduite enyavecxquelconque. On calcule le discriminent réduit :Δ?1=d2-be •siΔ?1>0, l"équation admet deux solutions distinctes eny. On obtient alors deux droites horizontales d"équationy=y1ety=y2

PAULMILAN2TERMINALE C PRGM1975

1.2 CONIQUES DÉPOURVUES DE CENTRE

•siΔ?1=0, l"équation admet alors une solution double eny. On obtient alors une droite horizontale d"équationy=y0 •siΔ?1<0, l"équation n"admet pas de solution eny. Il n"y a donc aucun point vérifiant l"équation.

2)a=0 etc?=0 l"équation devient :

by

2+2cx+2dy+e=0?b?

y+d b? 2 -d2b2? =-2cx-e ?b? y+d b? 2 =-2cx+d2b-e?b? y+db? 2 =-2c? x+d2-be2bc? y+d b? 2 =-2cb? x+Δ?12bc?

On pose alors :p=-c

bet l"on fait le changement de repère suivant : ?X=x+Δ?1 2bc Y=y+d bde nouvelle origineΩ? -Δ?1

2bc;-db?

On obtient la courbe d"équationY2=2pXdans le repère(Ω,?ı,??)

Y=±?

2pX Exemple :Construire la parabole d"équation :y2-x-4y+2=0

On change la forme :

(y-2)2-4-x+2=0?(y-2)2=x+2

On fait le changement de repère suivant

?X=x+2

Y=y-2et on poseΩ(-2; 2)

OnobtientlaparaboleY2=X, décomposéeendeuxdemi-parabolesY=±⎷ X

1 2 3 4 5 6-1-20

-11 2345
O

Y=±⎷X

xXy Y

PAULMILAN3TERMINALE C PRGM1975

1.3 CONIQUES À CENTRE

1.3 Coniques à centre

Théorème 2 :Lorsque le produitab?=0, la conique possède un centre et son équation peut s"écrire sous la forme : aX

2+bY2=kde centreΩ?

-c a;-db?

1)ab>0 (par exemplea>0 etb>0)

•k=0 La conique se réduit àun seul pointΩ.

•k<0 La conique ne possèdeaucun point.

•k>0 La conique estune ellipsed"équation du typeX2α2+Y2β2=1

2)ab<0

•k=0 La conique est l"union dedeux droitesd"équationY=±X?-ab symétriques par rapport à(ΩX)et(ΩY) •k?=0 La conique estune hyperboled"équation du typeX2α2-Y2β2=±1 d"asymptotesY=±β αX Remarque :Toutes ses coniques possèdent deux axes de symétrie(ΩX)et(ΩY). Démonstration :On change la forme de l"équation : ax

2+by2+2cx+2dy+e=0?a?

x 2+2c a? +b? y

2+2db?

+e=0? a x+c a?

2+c2a2?

+b? y+db? 2 +d2b2? +e=0? a x+c a? 2+b? y+db? 2 =c2a+d2b-e

On pose alorsk=c2

a+d2b-eet l"on fait le changement de variable suivant : ?X=x+c a Y=y+d bde nouvelle origineΩ? -c a;-db?

On obtient alors l"équation :aX2+bY2=k

1)ab>0 (par exemplea>0 etb>0)

•Sik=0 la seule solution de l"équation estX=0 etY=0, donc la conique se réduit àΩ •Sik<0 l"équation n"a pas de solution donc la conique ne possède aucun point.

PAULMILAN4TERMINALE C PRGM1975

1.3 CONIQUES À CENTRE

•Sik>0, on divise park:akX2+bkY2=1?X2k

a+ Y2 k b=1

On pose alors commea>0,b>0 etk>0 :α2=k

aetβ=kb on obtient alors :X2

α2+Y2β2=1 équation d"une ellipse

Remarque :

α: longueur de demi-axe horizontal de l"ellipse

β: longueur de demi-axe vertical de l"ellipse

siα=βl"ellipse est alors un cercle de rayonα.

2)ab<0

•Sik=0 l"équation devientY2=-abX2?Y=±X?-ab. la conique est alors la réunion de deux droites.

•Sik?=0, on divise park:akX2+bkY2=1?X2k

a+ Y2 k b=1 Commeaetbsont de signes contraires deux cas sont envisageables : a) k a>0 etkb<0, on pose alors :α2=kaetβ2=-kb l"équation devient alors X2

α2-Y2β2=1

b) k a<0 etkb>0, on pose alors :α2=-kaetβ2=kb l"équation devient alors-X2

α2+Y2β2=1?X2α2-Y2β2=-1

On obtient alors dans ces deux cas l"équation d"une hyperbole.

Exemples :Construire les courbes suivantes :

a)x2+4y2-4x+8y-17=0 b) 4x2-9y2+8x+18y-41=0 a) On change la forme de l"équation : xquotesdbs_dbs29.pdfusesText_35
[PDF] conique parabole

[PDF] conique exercice corrigé

[PDF] exercices corrigés coniques terminale s pdf

[PDF] conjecture geometrie

[PDF] limite de

[PDF] suite définie par récurrence limite

[PDF] conjecture d'une suite

[PDF] comportement d'une suite exercices

[PDF] comportement d'une suite 1ere s

[PDF] conjecturer le comportement d'une suite ? l'infini

[PDF] limite finie d'une suite

[PDF] conjecturer la limite d'une suite avec calculatrice casio

[PDF] déterminer la limite d'une suite

[PDF] un+1=un+2n+3

[PDF] monotonie d'une suite