[PDF] Forme trigonométrique dun nombre complexe – Applications





Previous PDF Next PDF



Correction : conjugué dun nombre complexe Exercice 1 Exercice 2

Correction : conjugué d'un nombre complexe www.bossetesmaths.com. Exercice 1. •?i = i ;. •2+ i = 2? i ;. •3?2i = 3+2i ;.



Nombres complexes

Exercice 15. Soit z un nombre complexe de module ? d'argument ?



Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1 : On donne 0

2. Calculer le module et un argument des nombres complexes suivants ainsi que de leur conjugués. 1 = 1 + (1 + 



Les nombres complexes - Lycée dAdultes

9 nov. 2014 Complexe conjugué. Exercice 7. Donner la forme algébrique du conjugué z des complexes suivants : z. 1) z = 3 ? 4i.



Terminale générale - Nombres complexes - Exercices

Exercice 3. Déterminer le conjugué du nombre complexe suivant et l'écrire sous forme algébrique : z. 1= 2+i. 1?2i. Exercice 4. Développer (3+2i)5.



Nombres complexes - Ecriture algébrique- conjugué

B=(5ix+ 7)(3ix+ 10) soit un nombre imaginaire pur (ce qui signifie que B a une écriture algébrique de la forme B=ib avec b nombre réel). EXERCICE 6. Écrire la 



Effectuer des calculs algébriques avec les nombres complexes

Le conjugué du nombre complexe z = x + iy avec x et y réels



Forme trigonométrique dun nombre complexe – Applications

4 Applications géométriques des nombres complexes Module et argument de l'opposé et du conjugué . ... Exercices : 72 73



Nombres complexes

Nombres complexes. Table des matières. 1 Ensemble C forme algébrique



Forme trigonométrique dun nombre complexe. Applications Niveau

Exercice: Résoudre dans C les équations suivantes : 1. 2z+ i = 2-i. 2. 3z +1 -2i = 4 – 3i -2z. 2°) Conjugué d'un nombre complexe a) Définition.



[PDF] Correction : conjugué dun nombre complexe Bosse Tes Maths

Correction : conjugué d'un nombre complexe www bossetesmaths com Exercice 1 •?i = i ; •2+ i = 2? i ; •3?2i = 3+2i ;



[PDF] Exercices Corrigés Corps des nombres complexes

Exercice 1 – 1) Qu'est ce que le conjugué d'un nombre complexe ? 2) Déterminer les nombres complexes z vérifiant : (1 + i)z - 1 + i = 0 3) Préciser le 



[PDF] Nombres complexes - Exo7 - Exercices de mathématiques

Exercice 15 Soit z un nombre complexe de module ? d'argument ? et soit z son conjugué Calculer (z+z)(z2 +z2) (zn + zn) en fonction de ? et ?



[PDF] Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1

Calculer le module et un argument des nombres complexes suivants ainsi que de leur conjugués 1 = 1 + (1 + ?2); 2 = ?10 + 2?5 + ( 



[PDF] NOMBRES COMPLEXES - EXERCICES CORRIGES ( ) ) ( ) ( ) ) ( )

NOMBRES COMPLEXES - EXERCICES CORRIGES Exercice n°1 On donne 3 3 z i = + et 1 2 z i ?=? + Ecrire sous forme algébrique les complexes suivants :





[PDF] Terminale générale - Nombres complexes - Exercices - Devoirs

corrigé disponible Déterminer le conjugué du nombre complexe suivant et l'écrire sous forme algébrique : z 1= 2+i 1?2i Exercice 4 corrigé disponible



[PDF] NOMBRES COMPLEXES (Partie 1) - AlloSchool

s'appelles des nombres complexes qui vérifie : 1) ? ? ? S'appelle le conjugué du nombre complexe Exercice 3: Résoudre dans ? les équations



[PDF] Les nombres complexes - Lycée dAdultes

9 nov 2014 · Complexe conjugué Exercice 7 Donner la forme algébrique du conjugué z des complexes suivants : z 1) z = 3 ? 4i 2) z =



[PDF] NOMBRES COMPLEXES CONJUGUÉS - C Lainé

NOMBRES COMPLEXES (FICHE 1) Les nombres complexes Fiche d'exercices Exercice 1 Soit = + z x iy avec x et y réels ; on note Z le nombre complexe :

  • Comment calculer le conjugué d'un complexe ?

    Le module du conjugué d'un complexe est égal au module du complexe : ?z=z. Le module d'un produit est égal au produit des modules : z?z?=z?z?.
  • Comment montrer que deux nombres complexes sont conjugués ?

    Pour un nombre complexe �� = �� + �� �� , son conjugué, �� , est défini par �� = �� ? �� �� .
  • Comment trouver le conjugué ?

    A partir de la forme algébrique d'un nombre complexe z=a+ib z = a + i b , le conjugué se calcule ¯¯¯z=a?ib z ¯ = a ? i b . En d'autres mots, pour trouver le conjugué d'un nombre complexe , prendre ce même nombre complexe mais avec l'opposé (signe moins) de sa partie imaginaire (contenant i ).
  • Définition : Module d'un nombre complexe
    Le module d'un nombre complexe �� = �� + �� �� est défini par �� = ? �� + �� . ? ? . Si �� est un nombre réel, son module est simplement sa valeur absolue.
Forme trigonométrique dun nombre complexe – Applications

Forme trigonométrique

d"un nombre complexe - Applications

Christophe ROSSIGNOL

Année scolaire 2019/2020Table des matières

1 Représentation géométrique d"un nombre complexe

2

1.1 Rappels : affixe d"un point

2

1.2 Affixe d"un vecteur

3

2 Forme trigonométrique3

2.1 Argument d"un nombre complexe non nul

3

2.2 Forme trigonométrique d"un complexe non nul

5

2.3 Égalité de deux nombres complexes

6

2.4 Cas d"un produit ou d"un quotient

6

3 Forme exponentielle7

4 Applications géométriques des nombres complexes

7

4.1 Distances et angles orientés

7

4.2 Caractérisation des cercles et des médiatrices

8

4.3 Pour aller plus loin...

8

Table des figures

1 Interprétation géométrique

2

2 Argument d"un nombre complexe

4

3 Module et argument de l"opposé et du conjugué

4

4 Forme trigonométrique d"un nombre complexe

5

5 Triangle rectangle isocèle direct

9

6 Triangle équilatéral

9 ?

Ce cours est placé sous licence Creative Commons BY-SAhttp://creativecommons.org/licenses/by-sa/2.0/fr/

1

1 REPRÉSENTATION GÉOMÉTRIQUE D"UN NOMBRE COMPLEXE

1 Représentation géométrique d"un nombre complexe

1.1 Rappels : affixe d"un pointDéfinition :Soit(O;?u;?v)un repère orthonormé direct etzun nombre complexe de forme algébrique

z=a+ib. Le p ointM(a;b)est appeléimage de z. (voir figure1 )

On dit que Ma pouraffixe z.

La distance OMest appeléemo dulede z. On note|z|=OM.Figure1 - Interprétation géométrique Conséquences :1.L"ensem bledes nom bresréels est représen tépar l"axe des abscisses. L"ensemble des imaginaires purs est représenté par l"axe des ordonnés. 2.

On a |z|=⎷a

2+b2.

3.|z|= 0si et seulement siz= 0.Propriété :Soitz?C.

On a :

|z|2=zz

Démonstration :

On notez=a+ibla forme algébrique du complexez.

zz= (a+ib)(a-ib) =a2-(ib)2=a2+b2=|z|2Propriété :Affixe du milieu d"un segment

SoitAetBdeux points d"affixes respectiveszAetzB.

On noteIle milieu du segment[AB].

Alors, l"affixe deIest :

z

I=zA+zB2

Exercice :Démontrer cette propriété à l"aide des coordonnées du milieu d"un segment. 2

2 FORME TRIGONOMÉTRIQUE 1.2 Affixe d"un vecteur

1.2 Affixe d"un vecteur

Définition :Soit-→wun vecteur de coordonnées?a b?

On appelle

affixe de -→wle complexez=a+ib.Propriété 1 :SoientAetBdeux points d"affixes respectiveszAetzB. Alors, le vecteur--→ABa comme affixezB-zA.Démonstration : SizA=xA+iyAetzB=xB+iyB(formes algébriques), alorsA(xA;yA)etB(xB;yB).

Les coordonnées du vecteur

--→ABsont donc?xB-xA y B-yA? . Par suite, son affixe est : z= (xB-xA) +i(yB-yA) = (xB+iyB)-(xA+iyA) =zB-zA Remarques :Il découle facilement des règle de calcul sur les coordonnées de vecteurs que : 1. Deux v ecteursson tégaux si et seuleme ntsi leurs affixes son tégales 2. Si -→wet-→w?sont deux vecteurs d"affixes respectiveszetz?etkun réel : l"affixe de -→w+-→w?estz+z?; l"affixe de k-→westkz. 3.

On p eutdonc utiliser les affixes p ourdéterminer une colinéarité de v ecteurs,don cp ourd éterminer

un parallélisme ou un alignement. Exercices :66, 67, 70 page 2541- 68, 69 page 2542[TransMath]

2 Forme trigonométrique d"un nombre complexe non nul

2.1 Argument d"un nombre complexe non nulDéfinition :Soitzun nombre complexenon n ulet Mle point d"affixez(voir figure2 ).

On appelle

argumen t de ztoute mesure en radians de l"angle? ?u;--→OM? . On le notearg(z). il est défini

à2kπprès (k?Z).

On a donc :

arg(z) =? ?u;--→OM? [2π]Remarques :1.Si zest un réel, c"est-à-direz=a: si a >0,|z|=aetarg(z) = 0 si a <0,|z|=-aetarg(z) =π 2.

Si zest un imaginaire pur, c"est-à-direz=ib:

si b >0,|z|=betarg(z) =π2 si b <0,|z|=-betarg(z) =-π2 Propriété :Module et argument de l"opposé et du conjugué Soitzun complexe non nul etM1,M2,M3etM4les points d"affixes respectivesz,z,-zet-z. Par des considérations géométriques simples sur la figure 3 , on obtient : |z|=|z|=|-z|=|-z| arg(z) =-arg(z) [2π] arg(-z) =π+ arg(z) [2π] arg(-z) =π-arg(z) [2π]1. Affixe d"un point, d"un vecteur.

2. Ensembles de points

3

2.1 Argument d"un nombre complexe non nul 2 FORME TRIGONOMÉTRIQUE

Figure2 - Argument d"un nombre complexeFigure3 - Module et argument de l"opposé et du conjugué 4

2 FORME TRIGONOMÉTRIQUE 2.2 Forme trigonométrique d"un complexe non nul

Exercices :72, 73, 74 page 2543[TransMath]

2.2 Forme trigonométrique d"un complexe non nulThéorème - Définition :Tout nombre complexe non nulzs"écrit sous la forme suivante :

z=r(cos(θ) +isin(θ))avecr=|z|etθ= arg(z) [2π]

Cette forme est appelée

for metrigonométrique du complexe z.Démonstration :

On noteMle point d"affixez,r=OMetθ=?

?u;--→OM? [2π]. La demi-droite[OM)coupe le cercle trigonométrique en un pointA(voir figure4 ).

Les coordonnées deAsont(cos(θ) ; sin(θ))et, comme--→OM=r-→OA, les coordonnées deMsont

(rcos(θ) ;rsin(θ)).

L"affixe deMest donc :

z=r(cos(θ) +isin(θ))Figure4 - Forme trigonométrique d"un nombre complexe

Exercice :22 page 2444[TransMath]Lien entre forme algébrique et forme trigonométrique :Soitzun complexe non nul de forme al-

gébriquez=a+ibet de forme trigonométriquez=r(cosθ+isinθ). Alors :

Si l"on c onnaîtretθ:?

a=rcosθ b=rsinθ

Si l"on c onnaîtaetb:

r=|z|=?a

2+b2et?

cosθ=ar sinθ=br

Exemple :Soitz=⎷3-i.

r=???⎷3-i???=?? ⎷3

2+ (-1)2=⎷3 + 1 =

⎷4 = 2 cosθ=⎷3 2 sinθ=-12

On a doncarg(z) =θ=-π6

[2π]. Exercices :20 page 244 et 77 page 2555- 90 page 2566[TransMath]3. Argument d"un nombre complexe.

4. Forme trigonométrique d"un complexe non nul.

5. Passage de la forme algébrique à la forme trigonométrique.

6. Ensembles de points.

5

2.3 Égalité de deux nombres complexes 2 FORME TRIGONOMÉTRIQUE

2.3 Égalité de deux nombres complexes

Propriété :Égalité de deux complexes

Les complexesz=r(cosθ+isinθ)etz?=r?(cosθ?+isinθ?)avecr >0etr?>0sontégaux si et seulement si : r=r?

θ=θ?[2π]Remarque :Attention!L"h ypothèser >0est essentielle pour obtenir la forme trigonométrique d"un

nombre complexe. Exemples :Donner la forme trigonométrique des complexesz1=-3?cos?π4 ?+isin?π4 ??etz2= 2?cos?π6 ?-isin?π6 La forme d onnéep ourz1n"est pas une forme trigonométrique :z1=-3?cos?π4 ?+isin?π4

On a :z1= 3?-cos?π4

?-isin?π4 ??avec? cos?5π4 ?=-cos?π4 sin ?5π4 ?=-sin?π4 La forme trigonométrique dez1est donc :z1= 3?cos?5π4 ?+isin?5π4 ??, c"est-à-dire|z1|= 3et arg(z1) =5π4 [2π]. La forme d onnéep ourz2n"est pas une forme trigonométrique :z2= 2?cos?π6 ?-isin?π6

On a :z2= 2?cos?π6

?+i?-sin?π6 ???avec? cos?-π6 ?= cos?π6 sin ?-π6 ?=-sin?π6 La forme trigonométrique dez2est donc :z2= 2?cos?-π6 ?+isin?-π6 ??, c"est-à-dire|z2|= 2et arg(z2) =-π6 [2π].

Exercice :78 page 2557[TransMath]

2.4 Cas d"un produit ou d"un quotientPropriété :Module et argument d"un produit et d"un quotient

Soientzetz?deux nombres complexes non nuls. On a : |zz?|=|z| × |z?|etarg(zz?) =arg(z) + arg(z?) [2π]???zz ????=|z||z?|etarg?zz arg(z)-arg(z?) [2π]Démonstration (partielle) : On notez=r(cosθ+isinθ)etz?=r?(cosθ?+isinθ?)les formes trigonométriques dezet dez?.

On a donc :?

|z|=r arg(z) =θ[2π]et? |z?|=r? arg(z?) =θ?[2π]

De plus :

zz =rr?[(cosθcosθ?-sinθsinθ?) +i(cosθsinθ?+ sinθcosθ?)] =rr?[cos(θ+θ?) +isin(θ+θ?)] Donc, d"après l"unicité de la forme trigonométrique : |zz?|=rr? arg(zz?) =θ+θ?[2π] Exercice :En suivant un raisonnement analogue, montrer la deuxième partie de la propriété. Remarques :1.Si nest un entier naturel non nul etzun complexe non nul : |zn|=|z|netarg(zn) =narg(z) [2π]7. Détermination de formes trigonométriques. 6

4 APPLICATIONS GÉOMÉTRIQUES DES NOMBRES COMPLEXES

2.

Si zun complexe non nul :????1z

???=1|z|etarg?1z =-arg(z) [2π] Exercices :76 page 254; 79, 80, 81 page 2558- 99, 101 page 2579- [TransMath]

3 Forme exponentielle d"un complexe non nulDéfinition :Pour toutθ?R, on note :

e iθ= cosθ+isinθRemarque :" eiθ» se lit " exponentielle deiθ».

Exemples :

ei0= 1eiπ2 =ieiπ=-1e-iπ2 =-ieiπ4 =⎷2 2 +i⎷2 2

Propriété :Soientθetθ?deux réels.

e iθeiθe

iθ?=ei(θ-θ?)Remarques :1.La démonstration de cette pr opriétéest la même que celle du 2.4 , en prenantr=r?= 1.

2.

On retrouv eles propriétés " classiques » de l"exp onentielle,ce qui justifi een partie la notation.

3. L"exp onentiellecomplexe se man ipulecomme une puissance, ce qui rend les calcu lssur les argumen ts plus faciles.Propriété 2 :Formule deMoivre

Soitθun réel etnun entier naturel. On a :

?eiθ?n=einθRemarque :1.C"est une conséquence directe de la Propriété 1. Ce résultat se montre par récurrence

surn. 2.

On a don c:

(cos(θ) +isin(θ))n= cos(nθ) +isin(nθ)Propriété :Soientθetθ?deux réels. e

iθ=eiθ?équivaut àθ=θ?[2π].Définition :Tout nombre complexeznon nul, dont un argument estθ, peut s"écrire sous la

forme :z=|z|eiθ;

Cette écriture est appelée

forme exp onentielle

du complexe z.Remarque :En particulier, tous les complexes de module1admettent une écriture de la forme eiθ.

Exercices :23 page 245 et 83 page 25510- 24 page 24511- 25 page 245et 84, 85, 87 page 25512- 88 page 255

13[TransMath]

quotesdbs_dbs31.pdfusesText_37
[PDF] conjugué math

[PDF] conjugué d'un nombre complexe exemple

[PDF] conjugué de i

[PDF] conjugué d'un nombre complexe quotient

[PDF] nombre complexe conjugué demonstration

[PDF] conjugué complexe exponentielle

[PDF] inverse d'un nombre complexe

[PDF] conjugue les verbes entre parenthèses au présent de lindicatif

[PDF] conjuguer les verbes entre parenthèses au passé composé

[PDF] conjuguer les verbes entre parenthèses au temps qui convient

[PDF] mets les verbes entre parenthèses au présent

[PDF] tout les temps de l'indicatif

[PDF] pluperfect en anglais

[PDF] preterit be ing ou preterit simple

[PDF] preterit have