[PDF] [PDF] Développements limités - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



[PDF] Limites et continuité de fonctions

Limite en l'infini limite en un réel La fonction arctan Exemples naturel et a1 a2 a3 des chiffres ne contenant pas de suite infinie de 9)



[PDF] Les Développements Limités

dit que f admet un développement limité à l'ordre n en x0 en abrégé DLn(x0) s'il existe des Calculons le DL de arctan(x) à l'ordre 5 en 0 On a



[PDF] Développements limités

Exercice 12 1 Écrire les développements limités d'ordre 5 en 0 des fonctions sin arcsin sinh argsinh tan arctan 



[PDF] L1 - MATH1A - FORMULAIRE

Si f et h ont la même limite l (finie ou infinie) au point c ? R x > 0 ? arctan (x)+arctan (1/x) = ?/2 x < 0 ? arctan (x)+arctan (1/x) =



[PDF] Exercices de mathématiques - Exo7

Calculs de limites développements limités développements asymptotiques Pour x réel posons f(x) = arctan(cosx) f est dérivable sur R et pour x réel 



[PDF] Développements limités - Exo7 - Exercices de mathématiques

Donner des équivalents simples pour les fonctions suivantes : 1 2ex ? ? 1+4x? ? 1+6x2 en 0 2 (cosx)sinx ?(cosx)tanx en 0 3 arctanx+arctan 3



[PDF] 254 Compléments (fonctions trigonométriques inverses)

La fonction arctan: arctan est dérivable sur R et on a arctan(x)' = Le passage à la limite lorsque b tend vers + ? (ou lorsque a tend vers



[PDF] Chapter 1 Limites et Equivalents - PédagoTech de Toulouse INP

Dans ce qui précède on avait k (x) ? 1012f (x) ce qui traduit l'idée qu'à un facteur près le comportement à l'infini est le même 1 2 sinx ? x quand x ? 0



[PDF] Développements limités = - ptsi-deodat

l'ordre de ce développement limité et enfin la fonction : (a) 3 x ? (1 + Montrer que ?x > 0Arctan(x) + Arctan(1 La limite est infini



[PDF] Développements limités I Généralités

D Développement limité d'une primitive ou d'une dérivée On dit f admet un développement limité à l'ordre n au voisinage de l'infini arctan x =



[PDF] Limites et continuité de fonctions

2 Limites d'une fonction Limite en l'infini limite en un réel Limite à gauche limite à droite Lien entre fonctions et suites



[PDF] developpements limités usuels

DEVELOPPEMENTS LIMITÉS USUELS Le développement limité de MAC LAURIN au voisinage de x = 0 à l'ordre "n" pour une fonction "f" indéfiniment dérivable 



[PDF] 254 Compléments (fonctions trigonométriques inverses)

arctan est dérivable sur R et on a arctan(x)' = 1 1 + x2 IV Complément à la liste des primitives des fonctions usuelles: ? désignant une constante réelle 



[PDF] L1 - MATH1A - FORMULAIRE

Si I = ]a +?[ et si f et h ont la même limite l (finie ou infinie) quand x tend vers +? alors g (x) tend vers l quand x tend vers +? 3 Si I = ]??a[ et 



[PDF] [PDF] Exo7 - Exercices de mathématiques

Calculer arctanx+arctan 1 x pour x réel non nul 3 Calculer cos(arctana) et sin(arctana) pour a réel donné 4 Calculer pour a et b réels tels que ab = 1 



[PDF] Développements limités

28 mar 2017 · FiGURe 5 – Fonction ln et ses polynômes de Taylor en 0 jusqu'à l'ordre n = 5 La primitive nulle en 0 est arctan(x) : arctan(x) = x ? x3 3



[PDF] FICHE : LIMITES ET ÉQUIVALENTS USUELS

FICHE : LIMITES ET ÉQUIVALENTS USUELS Limites usuelles lnx x ?????? x?+? 0 x lnx ?????? x?0+ 0 ln(x) x ?1 ???? x?1 1 ln(1+ x)



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

Cette limite s'appelle la dérivée de f en x0 on la note f (x0) Bien sûr il revient au même de regarder la limite lim x?x0 f(x) 



[PDF] Développements limités équivalents et calculs de limites

( ) = arctan( + 1) 1 Calculer le développement limité à l'ordre 3 de la fonction dérivée ? au voisinage de 0 2 En déduire le développement limité à 

:
Exo7

Développements limités

Corrections d"Arnaud Bodin.

1 Calculs

Exercice 1Donner le développement limité en 0 des fonctions : 1. cos xexpxà l"ordre 3

2.(ln(1+x))2à l"ordre 4

3. shxxx

3à l"ordre 6

4. e xp sin(x)à l"ordre 4 5. sin

6(x)à l"ordre 9

6. ln cos(x)à l"ordre 6 7.

1cosxà l"ordre 4

8. tan xà l"ordre 5 (ou 7 pour les plus courageux)

9.(1+x)11+xà l"ordre 3

10. arcsin ln(1+x2)à l"ordre 6 1. Dév eloppementlimité en 1 à l"ordre 3 de f(x) =px. 2. Dév eloppementlimité en 1 à l"ordre 3 de g(x) =epx 3.

Dév eloppementlimité à l"ordre 3 en

p3 deh(x) =ln(sinx).

Donner un développement limité à l"ordre 2 def(x) =p1+x21+x+p1+x2en 0. En déduire un développement à

l"ordre 2 en+¥. Calculer un développement à l"ordre 1 en¥.

2 Applications

Exercice 4Calculer les limites suivantes

lim x!0e x2cosxx

2limx!0ln(1+x)sinxx

limx!0cosxp1x2x 4

Étudier la position du graphe de l"applicationx7!ln(1+x+x2)par rapport à sa tangente en 0 et 1.

Déterminer:

1. (a) lim x!+¥px

2+3x+2+x

(b) lim x!¥px

2+3x+2+x

2. lim x!0+(arctanx)1x 2 3. lim x!0(1+3x)13

1sinx1cosx

Exercice 7Soitfl"application deRdansRdéfinie parf(x) =x31+x6:Calculerf(n)(0)pour toutn2N:

Soitaun nombre réel etf:]a;+¥[!Rune application de classeC2. On supposefetf00bornées ; on pose

M 0=sup x>ajf(x)jetM2=sup x>ajf00(x)j. 1. En appliquant une formule de T aylorreliant f(x)etf(x+h), montrer que, pour toutx>aet touth>0, on a :jf0(x)j6h2 M2+2h M0. 2.

En déduire que f0est bornée sur]a;+¥[.

3.

Établir le résultat sui vant: soit g:]0;+¥[!Rune application de classeC2à dérivée seconde bornée et

telle que limx!+¥g(x) =0. Alors limx!+¥g0(x) =0.

4 DL implicite

Exercice 9tan(x) =x1.Montrer que l"équation tan x=xpossède une unique solutionxndansnpp2 ;np+p2 (n2N). 2.

Quelle relation lie xnet arctan(xn)?

3. Donner un DL de xnen fonction denà l"ordre 0 pourn!¥. 4.

En reportant dans la relation trouvée en

2 , obtenir un DL dexnà l"ordre 2.

Exercice 10Recherche d"équivalentsDonner des équivalents simples pour les fonctions suivantes :

1.

2 exp1+4xp1+6x2, en 0

2.(cosx)sinx(cosx)tanx, en 0

3. arctan x+arctan3x 2p3 , enp3 4. px

2+123px

3+x+4px

4+x2, en+¥

5. ar gch

1cosx, en 0

cosx1+ax21+bx2 soit uno(xn)en 0 avecnmaximal.

Calculer

`=limx!+¥ ln(x+1)lnx x

Donner un équivalent de

ln(x+1)lnx x lorsquex!+¥.

Indication pourl"exer cice1 N1.cos xexpx=1+x13

x3+o(x3)

2.(ln(1+x))2=x2x3+1112

x4+o(x4) 3. shxxx 3=13! +15! x2+17! x4+19! x6+o(x6) 4. e xp sin(x)=1+x+12 x218 x4+o(x4) 5. sin

6(x) =x6x8+o(x9)

6. ln (cosx) =12 x2112 x4145 x6+o(x6) 7.

1cosx=1+12

x2+524 x4+o(x4) 8. tan x=x+x33 +2x515 +17x7315 +o(x7)

9.(1+x)11+x=exp11+xln(1+x)=1+xx2+x32

+o(x3) 10. arcsin ln(1+x2)=x2x42 +x62

+o(x6)Indication pourl"exer cice2 NPour la première question vous pouvez appliquer la formule de Taylor ou bien poserh=x1 et considérer un

dl au voisinage deh=0.Indication pourl"exer cice3 NEnx=0 c"est le quotient de deux dl. Enx= +¥, on poseh=1x

et on calcule un dl enh=0.Indication pourl"exer cice4 NIl s"agit bien sûr de calculer d"abord des dl afin d"obtenir la limite. On trouve :

1. lim x!0ex2cosxx 2=32 2. lim x!0ln(1+x)sinxx =0 3. lim x!0cosxp1x2x 4=16

Indication pour

l"exer cice

5 NFaire un dl enx=0 à l"ordre 2 cela donnef(0),f0(0)et la position par rapport à la tangente donc tout ce qu"il

faut pour répondre aux questions. Idem enx=1.Indication pourl"exer cice6 NIl s"agit de faire un dl afin de trouver la limite.

1. (a) lim x!+¥px

2+3x+2+x= +¥

(b) lim x!¥px

2+3x+2+x=32

2. lim x!0+(arctanx)1x 2=0 4 3.lim x!0(1+3x)13

1sinx1cosx=2Indication pourl"exer cice7 NCalculer d"abord le dl puis utiliser une formule de Taylor.

Indication pour

l"exer cice

8 N1.La formule à appliquer est celle de T aylor-Lagrangeà l"ordre 2.

2.

Étudier la fonction f(h) =h2

M2+2h

M0et trouver infh>0f(h).

3.

Il f autchoisir un a>0 tel queg(x)soit assez petit sur]a;+¥[; puis appliquer les questions précédentes

àgsur cet intervalle.Indication pourl"exer cice11 NIdentifier les dl de cosxet1+ax21+bx2enx=0.Indication pourl"exer cice12 NFaites un développement faisant intervenir desxet des lnx. Trouvez`=1.5

Correction del"exer cice1 N1.cos xexpx(à l"ordre 3).

Le dl de cosxà l"ordre 3 est

cosx=112! x2+e1(x)x3:

Le dl de expxà l"ordre 3 est

expx=1+x+12! x2+13! x3+e2(x)x3: Par convention toutes nos fonctionsei(x)vérifieronsei(x)!0 lorsquex!0.

On multiplie ces deux expressions

cosxexpx= 112
x2+e1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 =1

1+x+12!

x2+13! x3+e2(x)x3 on développe la ligne du dessus 12 x2

1+x+12!

x2+13! x3+e2(x)x3 +e1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 On va développer chacun de ces produits, par exemple pour le deuxième produit : 12! x2

1+x+12!

x2+13! x3+e2(x)x3 =12 x212 x314 x4112 x512 x2e2(x)x3: Mais on cherche un dl à l"ordre 3 donc tout terme enx4,x5ou plus se met danse3(x)x3, y compris x

2e2(x)x3qui est un bien de la formee(x)x3. Donc

12 x2

1+x+12!

x2+13! x3+e2(x)x3 =12 x212 x3+e3(x)x3:

Pour le troisième produit on a

e

1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 =e1(x)x3+xe1(x)x3+=e4(x)x3

On en arrive à :

cosxexpx= 112
x2+e1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 =1+x+12! x2+13! x3+e1(x)x3 12 x212 x3+e3(x)x3 +e4(x)x3il ne reste plus qu"à regrouper les termes : =1+x+(12 12 )x2+(16 12 )x3+e5(x)x3 =1+x13 x3+e5(x)x3

Ainsi le dl de cosxexpxen 0 à l"ordre 3 est :

cosxexpx=1+x13 x3+e5(x)x3: 6

2.(ln(1+x))2(à l"ordre 4).

Il s"agit juste de multiplier le dl de ln(1+x)par lui-même. En fait si l"on réfléchit un peu on s"aperçoit

qu"un dl à l"ordre 3 sera suffisant (car le terme constant est nul) : ln(1+x) =x12 x2+13 x3+e(x)x3 e

5(x)!0 lorsquex!0.

(ln(1+x))2=ln(1+x)ln(1+x) x12 x2+13 x3+e(x)x3 x12 x2+13 x3+e(x)x3 =x x12 x2+13 x3+e(x)x3 12 x2 x12 x2+13 x3+e(x)x3 13 x3 x12 x2+13 x3+e(x)x3 +e(x)x3 x12 x2+13 x3+e(x)x3 =x212 x3+13 x4+e(x)x4 12 x3+14 x4+e1(x)x4 13 x4+e2(x)x4 +e3(x)x4 =x2x3+1112 x4+e4(x)x4 3. shxxx

3(à l"ordre 6).

Pour le dl de

shxxx

3on commence par faire un dl du numérateur. Tout d"abord :

shx=x+13! x3+15! x5+17! x7+19! x9+e(x)x9 donc shxx=13! x3+15! x5+17! x7+19! x9+e(x)x9:

Il ne reste plus qu"à diviser parx3:

shxxx 3=13! x3+15! x5+17! x7+19! x9+e(x)x9x 3=13! +15! x2+17! x4+19! x6+e(x)x6

Remarquez que nous avons commencé par calculer un dl du numérateur à l"ordre 9, pour obtenir après

division un dl à l"ordre 6. 4. e xp sin(x)(à l"ordre 4).

On sait sinx=x13!

x3+o(x4)et exp(u) =1+u+12! u2+13! u3+14! u4+o(u4). 7

On note désormais toute fonctione(x)xn(oùe(x)!0 lorsquex!0) paro(xn). Cela évite les multiples

expressionsei(x)xn. On substitueu=sin(x), il faut donc calculeru;u2;u3etu4: u=sinx=x13! x3+o(x4) u

2=x13!

x3+o(x4)2=x213 x4+o(x4) u

3=x13!

x3+o(x4)3=x3+o(x4) u

3=x4+o(x4)eto(u4) =o(x4)

Pour obtenir :

exp(sin(x)) =1+x13! x3+o(x4) 12! x213 x4+o(x4) 13! x3+o(x4) 14! x4+o(x4) +o(x4) =1+x+12 x218 x4+o(x4): 5. sin

6(x)(à l"ordre 9).

On sait sin(x) =x13!

x3+o(x4).

Si l"on voulait calculer un dl de sin

2(x)à l"ordre 5 on écrirait :

sin

2(x) =x13!

x3+o(x4)2=x13! x3+o(x4)x13! x3+o(x4)=x2213! x4+o(x5):

En effet tous les autres termes sont danso(x5).

Le principe est le même pour sin

6(x): sin

6(x) =x13!

x3+o(x4)6=x13!quotesdbs_dbs11.pdfusesText_17
[PDF] equivalent de arctan en l'infini

[PDF] tangente hyperbolique dérivée

[PDF] tableau de conjugaison ce2

[PDF] lettre de motivation sorbonne licence

[PDF] fonction hyperbolique exo7

[PDF] dérivée cosh

[PDF] lettre de motivation stage immobilier débutant

[PDF] les fonctions hyperboliques et leurs réciproques pdf

[PDF] trigo hyperbolique

[PDF] lettre de motivation agence immobilière sans experience

[PDF] up and down tome 4

[PDF] ch(2x)

[PDF] up and down saison 4 pdf

[PDF] up and down saison 2 pdf ekladata

[PDF] up and down saison 2 ekladata