[PDF] TD1 – Continuité des fonctions de plusieurs variables réelles





Previous PDF Next PDF



2. Continuité des fonctions

« Une fonction f est continue sur un intervalle si on peut dessiner son graphe sans lever le crayon d'un bout à l'autre de l'intervalle. » Continuité sur un.



CONTINUITÉ

Théorème : Une fonction dérivable sur un intervalle I est continue sur cet intervalle. - Admis -. Méthode : Etudier la continuité d'une fonction.



Continuité dune fonction Continuité dune fonction Sur un intervalle

Pour démontrer qu'une fonction est continue sur un intervalle intervalle



Continuité et dérivabilité dune fonction

7 nov. 2014 1 Continuité d'une fonction ... Définition 2 : Soit une fonction f définie sur un intervalle ouvert ... Il faut donc étudier la continuité.



comment etudier la continuite dune fonction numerique

COMMENT ETUDIER LA CONTINUITE. D'UNE FONCTION NUMERIQUE ? Soit f une fonction définie sur un intervalle I et a un réel de I. On dit que f est continue en a 



CONTINUITÉ DES FONCTIONS

Théorème : Une fonction dérivable sur un intervalle est continue sur cet intervalle. - Admis -. Méthode : Étudier la continuité d'une fonction.



Continuité sur un intervalle.

Définition : La fonction partie entière est définie sur ? par x. E(x). E(x) étant le plus grand entier relatif inférieur ou égal à x . E(23)=2. E(0



CONTINUITÉ DES FONCTIONS

Théorème : Une fonction dérivable sur un intervalle I est continue sur cet intervalle. Méthode : Étudier la continuité d'une fonction.



TD1 – Continuité des fonctions de plusieurs variables réelles

Solution. On rappelle que pour étudier la continuité d'une fonction f sur un point il faut : — vérifier si la limite de f au point x0 existe et 



Chapitre I : Continuité et dérivabilité des fonctions réelles

- La fonction x est continue sur [0 ;+õ[ ln(x) est continue sur ]0 ;+õ[. - Les fonctions rationnelles sont continues sur tout intervalle contenu dans leur 





[PDF] 2 Continuité des fonctions - Apprendre-en-lignenet

On dit qu'une fonction est continue sur un intervalle si elle est continue en tout point de l'intervalle Aux extrémités de l'intervalle il faut comprendre 



[PDF] CONTINUITÉ DES FONCTIONS - maths et tiques

Définition intuitive : Une fonction est continue sur un intervalle si sa courbe représentative peut se tracer sans lever le crayon Méthode : Reconnaître 



[PDF] CONTINUITÉ - maths et tiques

Définition : Soit une fonction f définie sur un intervalle I On dit que f est continue sur I si on peut tracer la courbe représentative de f sur I "sans lever 



[PDF] Continuité sur un intervalle - Meilleur En Maths

Définition : Soit f une fonction définie sur un ensemble Df et soit a un réel appartenant à Df On dit que f est continue en a lorsque lim



[PDF] Continuité et dérivabilité dune fonction - Lycée dAdultes

7 nov 2014 · La fonction f est continue sur un intervalle I si et seulement si f est continue en tout point de I Remarque : Graphiquement la continuité d 



Continuité sur un intervalle

Si une fonction continue sur un intervalle prend des valeurs positives et des valeurs négatives alors elle s'annule sur cet intervalle $ \bullet$: L'image par 



[PDF] Continuité sur un intervalle

Continuité sur un intervalle Rappels sur la dérivation f est une fonction dérivable en a de I Dans un repère la tangente à la courbe représentative A de 



[PDF] LIMITE ET CONTINUITE - AlloSchool

En utilisant la notion des limites étudier la continuité de la fonction en 0 = 2 3- Interprétations graphiques 3 1 Activité : Activité 1: Considérons la 



Avis 4,5 (17.887) · GratuitOn étudie la continuité d'une fonction sur un intervalle I en particulier lorsque l'expression de cette fonction est différente suivant les valeurs de x.
  • Comment étudier la continuité d'une fonction sur un intervalle ?

    La fonction f est continue en a si f(x) peut être rendu aussi proche que l'on veut de f(a), en prenant x assez proche de a : f est continue en a?limx?af(x)=f(a), ce qui signifie aussi que pour tout réel strictement positif ?, il est possible déterminer un réel strictement positif ? tel que : x?a<??f(x)?f(a)<?.
  • Comment déterminer la continuité d'une fonction ?

    Ainsi, il suffit de dire que en dehors de ces réels 0 et 1 (c'est à dire en tout réel distinct de 0 et de 1) la fonction est bien continue (car ce sont des fonctions "usuelles"). Ensuite, il suffit de savoir si en 0, à gauche, la fonction admet une limite et si c'est la même que celle en 0, à droite (si elle existe).

Polytech" Paris - UPMC Agral 3, 2016 - 2017

TD1 - Continuité des fonctions de plusieurs variables réelles Exercice 1.Étudier la continuité des fonctions suivantes : f(x,y) =( x2-y2x

2+y2(x,y)?= (0,0)

0sinong(x,y) =(

y3(x-1)2+y2(x,y)?= (1,0)

0sinon

h(x,y) =( xln(1+x3)y(x2+y2)(x,y)?= (0,0)

0sinonk(x,y) =(

6x2yx

2+y2(x,y)?= (0,0)

0sinon

Solution. On rappelle que pour étudier la continuité d"une fonctionfsur un point il faut : - vérifier si la limite defau pointx0existe et, si elle existe, la calculer; - vérifier si la valeur de la limite est égal àf(x0). On rappelle que si une fonction dpvfest continue au point(x0,y0)alors toute restriction def à courbes continues qui passent pour le point(x0,y0)est continue au point(x0,y0). Donc une stratégie pour prouver que une fonctionfN"EST PAS CONTINUE au point(x0,y0) est trouver deux courbes continuesy=h1(x),y=h2(x)telles quey0=h1(x0)ety0=h2(x0) qui conduisent à deux valeurs différentes de la limite. La fonctionf(x,y)est continue surR2\ {0,0}parce que elle est quotient de polynômes. Pour montrer que elle est pas continue au point(0,0)on considére les axesx= 0ety= 0(qui évidement passent pour (0,0)) et on calculef(x,0)etf(0,y)(restriction defaux axes). On a pour toutx?= 0: f(x,0) =x2x 2= 1, et pour touty?= 0: f(0,y) =y2y 2=-1. La limite d"une constante est la constante, donc : lim x→0f(x,0) = 1etlimy→0f(0,y) =-1. Doncfn"admet pas de limite en(0,0)et elle ne peut pas être continue en(0,0). La fonctiong(x,y)est continue surR2\ {1,0}parce que elle est quotient de polynômes. Pour montrer que elle est continue au point(1,0)on utilise le théorème du pincement (dit aussi des gendarmes ou du sandwich). Dans le cas special dont on cherche une valeur nulle de la limite, ce théorème nous dit que il suffit majorer (en valeur absolue, au voisinage du point(1,0)) la fonctiongavec une fonction qui admet limite zero au même point. Attention : si la limite est non nulle, il ne suffit pas de montrer la majoration pour la valeur absolue deg!

A partir de la simple inégalité :

(x-1)2+y2≥y2, on a : 2 qui permet de encadrerg:

2|=|y|

1 entre la fonction nulle (qui a limite 0 pour toute valeur de(x,y)) et la fonction|y|( qui admet limite0pour toute(x,y)→(1,0)). On a démontré que : lim (x,y)→(1,0)y

3(x-1)2+y2= 0

et donc l"esemble de continuité degestR2. La fonctionh(x,y)est continue surR2\{0,0}parce que elle est quotient de fonctions continues. Comme on a fait pour la fonctionf, pour montrer que elle n"est pas continue au point(0,0)on cherche deux directions qui conduisent à deux limites différentes. On considèrey=xety=x2 ( qui passent pour(0,0)).

On trouve :

h(x,x) =xln(1 +x3)2x3 et h(x,x2) =ln(1 +x3)x

3(1 +x2).

On rappelle la limite usuelle :

lim t→0ln(1 +t)t = 1.

Cette limite usuelle se calcule en 1 passage si on écrit le polynôme de Taylor du dénominateur

au voisinage det= 0(essayer!). Par consequence en posantt=x3on a : lim x→0h(x,x) = limx→0xln(1 +x3)2x3= 0. et lim x→0h(x,x2) = limx→0ln(1 +x3)x

3(1 +x2)= 1.

Doncfn"admet pas de limite en(0,0)et elle ne peut pas être continue en(0,0). La fonctionk(x,y)est continue surR2\ {0,0}parce que elle est quotient de polynômes. Pour montrer que elle est continue au point(0,0)on utilise le théorème du pincement en suivante

exactement le même raisonnement que on a fait pour la fonctiong. A partir de la simple inégalité :

x

2+y2≥x2,

on a : 1x 2 qui permet de encadrerk:

0<|6x2yx

2|= 6|y|

entre la fonction nulle (qui a limite 0 pour toute valeur de(x,y)) et la fonction6|y|( qui admet limite0pour toute(x,y)→(1,0)). On a démontré que : lim (x,y)→(1,0)6x2yx

2+y2= 0

et donc l"esemble de continuité dekestR2. 2

Exercice 2.Soit

f(x,y) =( x2yx

4+y2(x,y)?= (0,0)

0sinon

Montrer que la restriction defà toute droite passante par(0,0)est continue, maisfn"est pas continue au point(0,0). Solution. Le but de l"exercise est de souligner que il suffit pas de montrer que une fonction est continue "restreinte sur le droites" pour déduire que elle est continue sur un point. Soity=mxune droite pour l"origine de coefficient angulairem. On trouve : f(x,mx) =mxx 2+m qui tend vers 0 si(x,y)→(0,0)pour toutm. De plus le longx= 0on trouve limite0.

Si on considère une paraboley=ax2on trouve :

lim (x,y)→(0,0)f(x,ax2) =a1 +a2 Et donc pour chaqueaon a une limite différente. Par consequence la limite n"existe pas. Exercice 3.Montrer que la fonctionf:R2\(0,0)→Rdéfinie par f(x,y) =sin(x2)-sin(y2)x 2+y2 n"est pas prolongeable par continuité en(0,0). Solution. On procède comme dans l"exercise 1. On considère cette fois les axesx= 0ety= 0, qui évidement passent pour(0,0). On a : f(x,0) =sin(x2)x

2etf(0,y) =-sin(y2)y

2

Dès que :

lim t→0sintt = 1 si on poset=x2out=y2on trouve que : lim x→0f(x,0) = 1etlimy→0f(0,y) =-1. Cela suffit pour dire que la limite en(0,0)n"existe pas et donc la fonction n"est pas prolongeable par continuitè en(0,0).

Exercice 4.Soitf:R2→Rdéfinie par

f(x,y) =¨ 12 (x2+y2)-1six2+y2>1 12 sinon

Montrer quefest continue.

Solution. Le termeg(x,y) =12

(x2+y2)-1est un polynôme et donc il est continue surR2. Pour prouver quefest continue il suffit vérifier que sur la circonférence {(x,y)?R2t.q.x2+y2= 1} le polynômeg(x,y)soit égal à-12 . Dès que : g(x,y)|{x2+y2=1}=12 (1)-1 =-12 la fonctionfest continue surR2. 3 Exercice 5.Prologer par continuité la fonction : f(x,y) =xyln(x2+y2) au point(0,0). Solution. On cherche de démontrer que notre fonction admet limite0lors que(x,y)→(0,0)à l"aide du théorème du pincement. A partir de la simple inégalité : (x+y)2≥0, on trouve |x2+y2| qui conduit à l"encadrement suivant : |(x2+y2)ln(x2+y2)|.

On rappelle la limite usuelle :

limt→0+tln(t) = 0. Si l"on poset= (x2+y2)on trouve que le terme de gauche admet limite0pour(x,y)→(0,0) et donc pour le théorème du pincement on a : lim (x,y→(0,0)f(x,y) = 0. La fonctionfadmet un prolongement par continuitéfdonné par :f(x,y) =¨f(x,y)si(x,y)?= (0,0)

0si(x,y) = (0,0)

Exercice 6.Dire si

f(x,y) =xy-2yx

2+y2-4x+ 4

est prolongeable par continuité au point(2,0). Solution. Comme d"habitude on commence en cherchant deux courbes qui passent pour le point (2,0)et conduisent à deux limites différentes. On essaye avecy= 0ety=x-2. On trouve : f(x,0) = 0etf(x,x-2) =-12 et donc lim(x,y→(2,0)f(x,0) = 0etlim(x,y→(2,0)f(x,x-2) =-12 La fonction n"est pas prolongeable par continuité au point(2,0)car la limite n"existe pas.

Exercice 7.Montrer que la fonction

f(x,y) = sin(xy2) admet limite0au point(0,0). Solution. Au voisinage de 0 on a l"inégalité usuelle : sin(t)< t. 4 Si l"on poset=xy2le théorème du pincement dit que la limite de f pour(x,y)→(0,0)est 0, car : etxy2tend vers 0 si(x,y)→(0,0). La fonctionfadmet un prolongement par continuitéfdonné par :f(x,y) =¨f(x,y)si(x,y)?= (0,0)

0si(x,y) = (0,0)

Exercice 8.Prolonger par continuité la fonction f(x,y) =sin(2x-2y)x-y sur la diagonale d"équationx=y.

Solution. On rappelle la limite usuelle :

lim t→0sin(t)t = 1. Si l"on poset=x-yon a quet→0six→y. Alors : lim x→ysin(2x-2y)x-y= limx→y2sin(2x-2y)2x-2y= 2. La fonctionfadmet un prolongement par continuitéfdonné par :f(x,y) =¨f(x,y)six?=y

2six=y

Exercice 9.En utilisant les coordonnées polaires montrer que la fonctionf(x,y)définie dans l"exercise 1 n"est pas continue au point(0,0). Solution. Il est souvent utile de passer aux cordonnées polaires pour simplifier le calcul d"une limite d"une fonction de deux variables. Tout point(x,y)?R2\(0,0)peut être represénté par ses cordonnées polaires centrées autour d"un point(x0,y0)grâce aux relations : x=x0+rcosθ y=y0+rsinθ avecr >0etθ?[0,2π[. On peut montrer que si lim r→0f(x0+rcosθ,y0+rsinθ) =l alors lim(x,y)→(x0,y0)f(x,y) =l. On considère la fonctionfdéfinie dans l"exercise 1 et on passe en polaires avecx0= 0,y0= 0.

On a :

lim(x,y)→(0,0)f(x,y) = limr→0f(rcosθ,rsinθ) = = lim r→0r

2(cos2θ-sin2θ)r

2(cos2θ-sin2θ)=

lim r→0(cos2θ-sin2θ) = cos2θ

Pour valeurs différentes decos2θon a une valeur limite différent donc la limite n"existe pas.

5quotesdbs_dbs15.pdfusesText_21
[PDF] limites et continuité cours

[PDF] choisir sa contraception

[PDF] pilule contraceptive

[PDF] methode contraceptive definition

[PDF] moyen de contraception femme

[PDF] contraception sans pilule

[PDF] des methodes de contraception

[PDF] contraception recherche

[PDF] les méthodes contraceptives avantages et inconvenients

[PDF] anti contraception

[PDF] cours contraception ppt

[PDF] toutes les méthodes contraceptives

[PDF] introduction sur la contraception

[PDF] cours contraception 4eme

[PDF] contraction de texte exemple