[PDF] “JUST THE MATHS” UNIT NUMBER 2.4 SERIES 4 (Further





Previous PDF Next PDF



Chapitre 4: Croissance divergence et convergence des suites - 4.1

Chapitre 4: Croissance divergence et convergence des suites. 4.1 Quelques définitions. Définitions : • Une suite est croissante si chaque terme est 



Math 104: Improper Integrals (With Solutions)

12 mars 2013 Convergence is good (means we can do the integral); divergence is bad (means we can't do the integral). Ryan Blair (U Penn). Math 104: ...



“JUST THE MATHS” UNIT NUMBER 2.4 SERIES 4 (Further

UNIT 2.4 - SERIES 4- FURTHER CONVERGENCE AND DIVERGENCE The series cannot converge unless the partial sums Sr and Sr?1 both tend to the same finite.



2 Sequences: Convergence and Divergence

2 Sequences: Convergence and Divergence. Theorem 2.3 (Uniqueness of limits). The limit of a convergent sequence is unique.



Sequences and Series

Since convergence depends only on what happens as n gets large adding a few terms at the beginning can't turn a convergent sequence into a divergent one.



EXAM QUESTIONS

divergent convergent



Series Convergence Tests Math 122 Calculus III

Math 122 Calculus III Question 1: given a series does it converge or diverge? ... test on this since we don't yet know any divergent series that it.



Untitled

Définition « rigoureuse » des notions de convergence et divergence pour une suite numérique. Manipulation des suites numériques convergentes et des suites 





6.1 Sigma Notation & Convergence / Divergence

More generally for example we have. 1. Page 2. Math 123 - Shields. Infinite Series. Week 6. 1. ? n=7. 2an = a7 + a8 + a9 + a10 + a11 + a12. Notice that the 



[PDF] Chapitre 4: Croissance divergence et convergence des suites

Chapitre 4: Croissance divergence et convergence des suites 4 1 Quelques définitions Définitions : • Une suite est croissante si chaque terme est 





[PDF] Cours de maths S/STI/ES - Suites et convergences

Suites récursives : définitions convergence et divergence opérations sur les limites démonstrations ou preuves par récurrence



[PDF] Convergence des suites numériques

Une suite (un) converge une limite finie l si et seulement si la suite d'indices pairs (u2n) et la suite d'indices impairs (u2n+1) convergent toutes les deux 



Convergence et divergence de suites Limites de suites numériques

Commençons ce cours sur les limites de suites numériques par la convergence et la divergence Télécharger en PDF Télécharger la fiche 



[PDF] [PDF] Séries - Exo7 - Cours de mathématiques

Les deux situations convergence/divergence sont possibles : ?k?0 qk converge si 0 < q < 1 et diverge si q ? 1 2 2 Théorème de comparaison



Convergence et divergence

12 mai 2020 · Toute suite convergente est bornée Remarque Attention la limite d'une suite n'est pas nécessairement le minorant ou le majorant dont on 



[PDF] Convergence de suites - Normale Sup

5 nov 2010 · Une suite réelle (un) converge vers une limite l ? R si ?? > 0 ?n0 ? N ?n ? n0 qui prouve exactement la divergence vers +?



[PDF] Séries numériques - Licence de mathématiques Lyon 1

Etudier la convergence de la série numérique de terme général : Montrer que la suite de terme général converge et calculer sa somme



[PDF] Chapitre 1 Suites réelles et complexes

On dit qu'une suite diverge si elle ne converge pas La proposition suivante fournit un autre crit`ere de divergence Proposition 1 2 5

  • Quelle est la différence entre la convergence et la divergence ?

    La convergence signifie que deux moyennes mobiles se rejoignent, tandis que la divergence signifie qu'elles s'éloignent l'une de l'autre.
  • Comment calculer la convergence ?

    S'il existe une fonction f telle que : un = f (n) et si f admet une limite finie ou infinie en alors : On va donc gérer la recherche de la limite de (un) comme on gérerait la recherche de la limite de f en , mais en utilisant n comme variable. Donc (un) converge vers 0.
  • Comment expliquer la convergence ?

    ? convergence

    1Fait de converger, de tendre vers un même point : La convergence de deux lignes.2Fait de tendre vers un même but ou un même résultat : La convergence des efforts.3Fait de présenter des analogies, des points communs : Les convergences entre nous sont nombreuses.
  • Si une série est convergente, alors S = Sn + Rn (pour tout n ? 0) et limn?+? Rn = 0. uk = Sn + Rn. Donc Rn = S ? Sn ? S ? S = 0 lorsque n ? +?.
“JUST THE MATHS” UNIT NUMBER 2.4 SERIES 4 (Further "JUST THE MATHS"

UNIT NUMBER

2.4

SERIES 4

(Further convergence and divergence) by A.J.Hobson2.4.1 Series of positive and negative terms

2.4.2 Absolute and conditional convergence

2.4.3 Tests for absolute convergence

2.4.4 Power series

2.4.5 Exercises

2.4.6 Answers to exercises

UNIT 2.4 - SERIES 4- FURTHER CONVERGENCE AND DIVERGENCE

2.4.1 SERIES OF POSITIVE AND NEGATIVE TERMS

Introduction

In Units 2.2 and 2.3, most of the series considered have included only positive terms. But now we shall examine the concepts of convergence and divergence in cases where negative terms are present. We note here, for example, that ther-th Term Test encountered in Unit 2.3 may be used for series whose terms are not necessarily all positive. This is because the formula u r=Sr-Sr-1 is valid for any series. The series cannot converge unless the partial sumsSrandSr-1both tend to the same finite limit asrtends to infinity which implies thaturtends to zero asrtends to infinity. A particularly simple kind of series with both positive and negative terms is one whose terms are alternately positive and negative. The following test is applicable to such series:

Test 4 - The Alternating Series Test

If u

1-u2+u3-u4+. . ,whereur>0,

is such that u r> ur+1andur→0 asr→ ∞, then the series converges.

Outline Proof:

(a)Suppose we re-group the series as (u1-u2) + (u3-u4) + (u5-u6) +. . .; then, it may be considered in the form 1 r=1v r, wherev1=u1-u2,v2=u3-u4,v3=u5-u6, . . .. This means thatvris positive, so that the correspondingr-th partial sums,Sr=v1+v2+ v

3+. . .+vr, steadily increase asrincreases.

(b)Alternatively, suppose we re-group the series as u

1-(u2-u3)-(u4-u5)-(u6-u7)-. . .;

then, it may be considered in the form u

1-∞

r=1w r, wherew1=u2-u3,w2=u4-u5,w3=u6-u7, . . .. In this case, each partial sum,Sr=u1-(w1+w2+w3+. . .+wr) is less thanu1since positive quantities are being subtracted from it. (c)We conclude that the partial sums of the original series are steadily increasing but are never greater thanu1. They must therefore tend to a finite limit asrtends to infinity; that is, the series converges.

ILUSTRATION

The series

r=1(-1)r-11r= 1-12+13-14+. . . is convergent since

1r>1r+ 1and1r→0 asr→ ∞.

2

2.4.2 ABSOLUTE AND CONDITIONAL CONVERGENCE

In this section, a link is made between a series having both positive and negative terms and the corresponding series for which all of the terms are positive. By making this link, we shall be able to make use of earlier tests for convergence and divergence.

DEFINITION (A)

If r=1u r is a series with both positive and negative terms, it is said to be"absolutely convergent" if r=1|ur| is convergent.

DEFINITION (B)

If r=1u r is a convergent series of positive and negative terms, but r=1|ur| is a divergent series, then the first of these two series is said to be"conditionally conver- gent".

ILLUSTRATIONS

1. The series

1 +122-132-142+152+162+. . .

converges absolutely since the series 1 +

122+132+142+152+162+. . .

converges. 3

2. The series

1-12+13-14+15-. . .

is conditionally convergent since, although it converges (by the Alternating Series Test), the series

1 +12+13+14+15+. . .

is divergent.

Notes:

(i) It may be shown that any series of positive and negative terms which isabsolutely convergent will also be convergent. (ii) Any test for the convergence of a series of positive terms may be used as a test for the absolute convergence of a series of both positive and negative terms.

2.4.3 TESTS FOR ABSOLUTE CONVERGENCE

The Comparison Test

Given the series

r=1u r, r=1v r is a convergent series of positive terms. Then, the given series is absolutely convergent.

D"Alembert"s Ratio Test

Given the series

r=1u r, suppose that lim r→∞? ???u r+1ur? ???=L. 4 Then the given series is absolutely convergent ifL <1. Note: IfL >1, then|ur+1|>|ur|for large enough values ofrshowing that thenumericalvalues of the terms steadily increase. This implies thaturdoesnottend to zero asrtends to infinity and, hence, by ther-th Term Test, the series diverges.

IfL= 1, there is no conclusion.

EXAMPLES

1. Show that the series

11×2-12×3-13×4+14×5-15×6-16×7+. .

is absolutely convergent.

Solution

Ther-th term of the series is numerically equal to

1r(r+ 1),

which is always less than

1r2, ther-th term of a known convergent series.

2. Show that the series

12-25+310-417+. .

is conditionally convergent.

Solution

Ther-th term of the series is numerically equal to rr2+ 1, which tends to zero asrtends to infinity. Also, rr2+ 1>r+ 1(r+ 1)2+ 1 5 since this may be reduced to the true statementr2+r >1. Hence, by the Alternating Series Test, the series converges.

However, it is also true that

rr2+ 1>rr2+r=1r+ 1; and, hence, by the Comparison Test, the series of absolute values is divergent, since r=11r+ 1 is divergent.

2.4.4 POWER SERIES

A series of the form

a

0+a1x+a2x2+a3x3+. .=∞?

r=0a rxror∞? r=1a r-1xr-1, wherexis usually a variable quantity, is called a"power Series inxwith coefficients a

0, a1, a2, a3, . . .".

Notes:

(i) In this kind of series, it is particularly useful to sum the series fromr= 0 to infinity rather than fromr= 1 to infinity so that the constant term at the beginning (if there is one) can be considered as the term inx0. But the various tests for convergence and divergence still apply in this alternative notation. (ii) A power series will not necessarily be convergent (or divergent) forallvalues ofxand it is usually required to determine the specificrangeof values ofxfor which the series converges. This can most frequently be done using D"Alembert"s Ratio Test.

ILLUSTRATION

For the series

x-x22+x33-x44+. .=∞ r=1(-1)r-1xrr, 6 we have ???u r+1ur? ????(-1)rxr+1r+ 1.r(-1)r-1xr? ????=????rr+ 1x????, which tends to|x|asrtends to infinity. Thus, the series converges absolutely when|x|<1 and diverges when|x|>1.

Ifx= 1, we have the series

1-12+13-14+. . ,

which converges by the Alternating Series Test; while, ifx=-1, we have the series -1-12-13-14-. . , which diverges.

2.4.5 EXERCISES

1. Show that the following alternating series are convergent:

(a)

1-12+14-18+. . .;

(b)

132-233+334-435+. .

2. Show that the following series are conditionally convergent:

(a)

1-1⎷2+1⎷3-1⎷4+. .;

7 (b)

21×3-32×4+43×5-54×6+. . .

3. Show that the following series are absolutely convergent:

(a)

32+43×12-54×122-65×123+. . .;

(b)

13+1×23×5-1×2×33×5×7-1×2×3×43×5×7×9+. .

4. Obtain the precise range of values ofxfor which each of the following power series is

convergent: (a)

1 +x+x22!+x33!+x44!+. . .;

(b) x1×2+x22×3+x33×4+x44×5+. . .; (c)

2x+3x223+4x333+5x443+. . .;

(d) 1 +

2x5+3x225+4x3125+. . .

8

2.4.6 ANSWERS TO EXERCISES

1. (a) Useur=12r-1(numerically);

(b) Useur=r3r+1(numerically).

2. (a) Useur=1⎷r(numerically);

(b) Useur=r+1r(r+2)(numerically).

3. (a) Useur=r+2r+1×12r-1- (numerically);

(b) Useur=2r(r!)2(2r+1)!(numerically).

4. (a) The power series converges for all values ofx;

(d)-5< x <5. Note: For further discussion of limiting values, see Unit 10.1 9quotesdbs_dbs29.pdfusesText_35
[PDF] convergence et divergence optique

[PDF] convergence et divergence définition

[PDF] convergence et divergence suite

[PDF] suite convergente définition

[PDF] dialogue entre un vendeur et un client en anglais

[PDF] guide de conversation espagnol pdf

[PDF] la conversation amoureuse pdf

[PDF] dialogue d amour entre deux amoureux

[PDF] dialogue tragique entre deux amoureux

[PDF] dialogue d'amour triste

[PDF] dialogue d'amour entre une fille et un garcon

[PDF] poème conversation jean tardieu

[PDF] exercice appel téléphonique

[PDF] simulation accueil téléphonique

[PDF] accueil téléphonique exercices