[PDF] [PDF] Les symboles somme et produit - Lycée dAdultes





Previous PDF Next PDF



LE SYMBOLE DE SOMMATION

Somme simple . Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de ... alors d'appliquer successivement la définition. Exemple.



Les symboles somme et produit - Lycée dAdultes

27 fév. 2017 Définition 1 : Soit (ai) une suite de nombres réels ou complexes. Soit deux entiers naturels n et p tels que p ? n on définit la somme ...



MULTIPLES DIVISEURS

https://www.maths-et-tiques.fr/telech/19NombreEntierM.pdf



Intégrale de Riemann

Définition 1.3 (Somme de Riemann). Soit f une fonction définie sur [a b]



Sommes et produits

Définition 1.1 (Définition d'une somme par récurrence). Exemple S'il vous reste un indice dans l'expression après le calcul de la somme c'est que.



Monotonie

Donnez la définition formelle de ”f est décroissante”. La somme de deux fonctions croissantes sur I est croissante.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Définition : Une suite (un) est une suite arithmétique s'il existe un nombre r tel que.



MATRICES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. MATRICES Définition : Une matrice de taille n x n est appelée une matrice carrée.



Intérêts

Définition 1. est donc la somme du capital et de l'intérêt. ... C +I =C +C ×i et la somme à rembourser après une période est donc. (1+i)×C.



TRANSLATION ET VECTEURS

6 sur 17. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. III. Somme de vecteurs. 1. Définition. Exemple : Soit t1 la translation de vecteur u.



[PDF] Les symboles somme et produit - Lycée dAdultes

Définition 2 : Lorsqu'on somme sur deux indices on parle de somme double Soit (aij) une suite double de nombres réels ou complexes et soit 



[PDF] Sommes produits récurrence - Normale Sup

18 sept 2010 · La somme est l'opération la plus élémentaire qui soit en mathématiques vous l'utilisez d'aileurs fréquemment depuis une bonne dizaine d'années 



[PDF] Sommes et produits

2 1 1 Indices muets Définition 1 Soient p ? N? et soient u0u1u2 up des réels La somme S = u0 + u1 ++u2 + ··· + up se note aussi



[PDF] LE SYMBOLE DE SOMMATION

Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes Ce symbole est généralement accompagné d'un indice que l'on 



[PDF] Calcul Algébrique

Maths en L?1gne Calcul Algébrique UJF Grenoble 1 Cours 1 1 Sommes et produits Nous commençons par les sommes L'écriture 5 ? k=0 2k se lit « somme 



Somme (arithmétique) - Wikipédia

{\displaystyle \sum _{i\mathop {=} 3}^ La notation informelle omet parfois la définition de l'indice et de ses limites de sommation lorsque ceux-ci sont clairs 



[PDF] chapitre 3 : congruences et arithmétique modulaire

Définition 1 1 (a) Aucun nombre de la forme 4k +3 n'est la somme de deux carrés a2 + b2 Math Soc 49(2) :182–192 2002 [6] W J LeVeque



[PDF] Sommes et produits

rang n + 1 Ainsi on peut formuler une définition équivalente de la somme à l'aide du principe de récurrence : Initialisation - somme vide : Pour tout (m 



[PDF] 02 doubles sommationspdf

de sommes doubles en travaillant sur la somme de neuf termes présentée plus haut ont une borne supérieure A; > 0 et ?kek ajk = Aj par définition



[PDF] Rappel : Le produit est le résultat dune multiplication La somme est

Exercice : traduire par un calcul les phrases suivantes : 1- Effectuer le produit de 45 par 6 2- Effectuer la somme de 12 et de 7 3- Effectuer le produit 

Définition 2 : Lorsqu'on somme sur deux indices, on parle de somme double. Soit (aij) une suite double de nombres réels ou complexes et soit 
  • Qu'est-ce que veut dire la somme en mathématiques ?

    ? MATH. Somme (arithmétique). Résultat d'une addition. Somme de deux nombres, de deux quantités.
  • Quelle est la somme d'un calcul ?

    En mathématiques, la sommation , notée ? , est le résultat de l'addition d'une suite de nombres (ou série entière). Le symbole ? est appelé l'opérateur somme, c'est un calculateur d'addition (finie ou infinie).
  • Comment est la somme ?

    La somme est le résultat d'une addition. Les nombres additionnés sont appelés des termes. La somme de 7 et de 5 est égale à 12. 12 est la somme, 7 et 5 sont les termes additionnés.
  • La somme des termes consécutifs d'une suite arithmétique est la moyenne du premier et du dernier terme (donc leur somme divisée par 2), multipliée par le nombre de termes.
DERNIÈRE IMPRESSION LE27 février 2017 à 15:46

Les symboles somme et produit

Table des matières

1 Le symbole sommeΣ2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linéarité et changement d"indice. . . . . . . . . . . . . . . . . . . . 3

1.3 Sommes télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Sommes à connaître. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Sommes doubles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Le symbole produitΠ9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation produit - somme. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Produits télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1 Le symbole sommeΣ

1.1 Définition

Définition 1 :Soit(ai)une suite de nombres réels ou complexes. Soit deux entiers naturelsnetptels quep?n, on définit la somme suivante par : n∑ k=pa k=ap+ap+1+···+an Soit I un sous-ensemble fini deN, la somme de tous les termesai,idécrivant I sera notée∑ i?Ia i

Remarque :

•La variablekest une variable muette, c"est à dire qu"une fois la somme calculée, le résultat ne dépend plus dek. On peut donc lui donner le nom qu"on veut :i, j,k, etc. à exception des bornes de la somme, icipetn:n∑ k=pa k=n∑ i=pa i=n∑ j=pa j

•On retrouve cette variable muette, lorsque l"on veut calculer une somme àl"aide d"un algorithme. (boucle Pour)

•Lorsque les termes de la somme ne dépendent pas de la variable, on somme des termes constants donc : n∑ k=03=3+3···+3? n+1 termes=3(n+1)

•Si I={2;4;6}alors∑

i?Ia i=a2+a4+a6.

Exemples :

•1+2+···+n=n∑

k=1k.

•1+2+22+···+2n=n∑

k=02k. •1 n+1+1n+2+···+12n=n∑ k=11n+k.

•1+3+5+···+(2n-1) =n∑

k=1(2k-1). ?Ne pas confondre : n∑ k=1(k+1) =n∑ k=1k+navecn∑ k=1k+1 les parenthèses font toute la différence. n∑ k=022k(n+1 termes) et2n∑ k=02k(2n+1 termes) Propriété 1 :Relation de Chasles et linéarité :

Relation de Chasles :

n∑ k=pa k= m∑ k=pa k+n∑ k= m+1 ak

L"opérateur somme est linéaire :

n∑ k=p(αak+βbk) =αn∑ k=pa k+βn∑ k=pb k.

PAUL MILAN2VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Exemple :n∑

k=0a k=

2∑

k=0a k+n∑ k= 3 aketn∑ k=0(3k+4k) =n∑ k=03k+4n∑ k=0k

1.2 Linéarité et changement d"indice

Propriété 2 :Changement d"indice.

L"expression à l"aide du symbole

∑n"est pas unique. On peut écrire une somme avec des indices différents. Les changements d"indicesk→k+p(translation)k→p-k(symétrie) sont les plus fréquents :n∑ k=1a k=n+p k=p+1a k-p=p-1 k=p-na p-k

Exemples :Calculer la somme :Sn=n∑

k=1?

1k-1k+1?

•On utilise la linéarité :Sn=n∑

k=11k-n∑ k=11k+1 •On effectue un changement d"indice sur la deuxième somme :k→k+1 : S n=n∑ k=11 k-n+1∑ k=21k. k=21k-n∑ k=21k-k=n+1? ???1 n+1=1-1n+1

Pourn?2, on considère la sommeSn=n+1∑

k=2k22k-1. Faire une translation d"indice pour que la nouvelle variable varieentre 0 et(n-1) et une symétrie d"indice pour que la nouvelle variable varie entre 2et(n+1). •Pour la translation, il suffit de faire :k→k-2, on a alors : S n=n-1∑ k=0(k+2)22(k+2)-1=n-1∑ k=0(k+2)22k+3 •Pour la symétrie, il faut déterminer le milieu :2+ (n+1)2=n+32. On effectue alors la symétriek→n+3-k, on a alors : S n=n+1∑ k=2(n+3-k)22(n+3-k)-1=n+1∑ k=2(n+3-k)22n+5-2k

PAUL MILAN3VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.3 Sommes télescopiques

Théorème 1 :Sommes télescopiques

Soit une suite(an)une suite de nombres réels ou complexes, on a : ?n,p?N,p?n,n∑ k=p(ak+1-ak) =an+1-ap

Remarque :n∑

k=0(ak+1-ak) =an+1-a0etn∑ k=0(bk-bk+1) =b0-bn+1

Démonstration :On pose :Sn=n∑

k=p(ak+1-ak)

•On utilise la linéarité :Sn=n∑

k=pa k+1-n∑ k=pa k •On effectue un changement d"indice sur la première somme :k→k+1 S n=n+1∑ k=p+1a k-n∑ k=pa k •On sépare les termes différents :Sn=an+1+n∑ k=p+1a k-n∑ k=p+1a k-ap=an+1-ap Exemples :Lessommestélescopiquessontuneméthodetrèsefficacepourcalcu- ler la somme des termes d"une suite(un). Il s"agit de trouver une suite(vn)pour queun=vn+1-vn. Ce n"est bien sûr pas toujours possible malheureusement.

Calculer les sommes suivantes :

•Sn=n∑

k=11k(k+1): on décompose1k(k+1)en1k-1k+1 S n=n∑ k=11 k(k+1)=n∑ k=1?

1k-1k+1?

=1-1n+1.

•Rn=n∑

k=1k×k! : on décomposek×k! en(k+1)k!-k!= (k+1)!-k! R n=n∑ k=1k×k!=n∑ k=1[ (k+1)!-k!]= (n+1)!-1

•Tn=n∑

k=11k(k+1)(k+2) a k(k+1)-a(k+1)(k+2)=a(k+2)-akk(k+1)(k+2)=2ak(k+1)(k+2), on aa=12 T n=n∑ k=11 k(k+1)(k+2)=12n∑ k=1?

1k(k+1)-1(k+1)(k+2)?

1 2?

12-1(n+1)(n+2)?

n(n+3)

4(n+1)(n+2)

PAUL MILAN4VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.4 Sommes à connaître

Théorème 2 :Somme des entiers, des carrés, des cubes Pour tout entier naturelnnon nul, on a les relations suivantes :

•S1(n) =n∑

k=1k=1+2+···+n=n(n+1)2

•S2(n) =n∑

k=1k2=1+4+···+n2=n(n+1)(2n+1)6

•S3(n) =n∑

k=1k3=1+8+···+n3=n2(n+1)24 Démonstration :La première formule a été démontré en première en ordon- nant la somme dans l"ordre croissant puis dans l"ordre décroissant. Les deux der- nières formules ont été démontré en terminale par récurrence. Mais les démons- trations directes sont possibles à l"aide de sommes télescopiques. On pourrait généraliser ces démonstration aux somme des puissancespième des entiers na- turels.

•S1(n), on utilise la sommen∑

k=1[(k+1)2-k2] = (n+1)2-1 n∑ k=1[(k+1)2-k2] =n∑ k=1(k2+2k+1-k2) =n∑ k=1(2k+1) =2n∑ k=1k+n∑ k=11=2S1(n) +n

On en déduit que :

2S1(n) +n= (n+1)2-1?S1(n) =(n+1)2-(n+1)

2=n(n+1)2

S2(n), on utilise la sommen∑

k=1[(k+1)3-k3] = (n+1)3-1 n∑ k=1[(k+1)3-k3] =n∑ k=1(k3+3k2+3k+1-k3) =n∑ k=1(3k2+3k+1) =3n∑ k=1k2+3n∑ k=1k+n∑ k=11=3S2(n) +3S1(n) +n

On en déduit que :

3S2(n)+3S1(n)+n= (n+1)3-1?3S2(n) =?(n+1)3-1-3S1(n)-n??

S 2=1 3? (n+1)3-3n(n+1)2-(n+1)? =2(n+1)3-3n(n+1)-2(n+1)6 (n+1)(2n2+4n+2-3n-2)

6=(n+1)(2n2+n)6=n(n+1)(2n+1)6

PAUL MILAN5VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

•S3(n), on utilise la sommen∑

k=1[(k+1)4-k4] = (n+1)4-1 n∑ k=1[(k+1)4-k4] =n∑ k=1(k4+4k3+6k2+4k+1-k4) =n∑ k=1(4k3+6k2+4k+1) =4n∑ k=1k3+6n∑ k=1k2+4n∑ k=1k+n∑ k=11=4S3(n) +6S2(n) +4S1(n)+n

On en déduit que :

4S3(n) +6S2(n) +4S1(n) +n= (n+1)4-1?

4S2(n) = (n+1)4-1-6S2(n)-4S1(n)-n

= (n+1)4-n(n+1)(2n+1)-2n(n+1)-(n+1) = (n+1)? (n+1)3-n(2n+1)-2n-1? = (n+1)(n3+3n2+3n+1-2n2-n-2n-1) = (n+1)(n3+n2) =n2(n+1)2

Théorème 3 :Somme géométrique

Pour tous naturelspetntels quep?n

et pour tout réel ou complexextel quex?=1, on a : n∑ k=pxk=xp×1-xn+1-p

1-x=premier terme×1-xNbre de termes1-x

Démonstration :PosonsSn=n∑

k=pxk.

•On utilise une somme télescopique :

S n-xSn=n∑ k=pxk-n∑ k=pxk+1=n∑ k=p(xk-xk+1) =xp-xn+1 •On factorise :Sn(1-x) =xp(1-xn+1-p)x?=1?Sn=xp×1-xn+1-p1-x

Exemple :S=n∑

k=32k=23×1-2n-2

1-2=23(2n-2-1) =2n+1-8

Théorème 4 :Factorisation standard

Pour tout naturelnet pour tous réels ou complexesaetb, on a : a n-bn= (a-b) n-1∑ k=0an-k-1bk= (a-b)(an-1+an-2b+···+abn-2+bn-1)

PAUL MILAN6VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Démonstration :On pose :Sn=n-1∑

k=0an-k-1bk, on a alors :

•aSn=n-1∑

k=0an-kbk=an+n-1∑ k=1an-kbkk→k+1=an+n-2∑ k=0an-k-1bk+1

•bSn=n-1∑

k=0an-k-1bk+1=n-2∑ k=0an-k-1bk+1+bn k=0an-k-1bk+1-n-2∑ k=0an-k-1bk+1-bn=an-bn

1.5 Sommes doubles

Définition 2 :Lorsqu"on somme sur deux indices, on parle de somme double. Soit(aij)une suite double de nombres réels ou complexes et soit deux entiers naturelsnetp, on note :

1?i?n1?j?pa

ij=n∑ i=1p j=1a ij=p j=1n∑ i=1a ijsomme des termes d"un tableaun×p. 1?i ?j?na ij=n∑ j=1 j i=1a ij=n∑ i=1n∑ j=i aijsomme triangulaire d"un tableaun2. 1?i Remarque :On peut noter :∑

1?i,j?na

ij=∑

1?i?n1?j?na

ij On peut schématiser ces sommes double par un tableau double entrée.

1?i?n1?j?pa

ij? ij12...pTotal

1a11a12...a1p

p j=1a 1j

2a21a22...a2p

p j=1a 2j nan1an2...anp p j=1a nj Tot. n∑ i=1a i1n∑ i=1a i2 n∑ i=1a ip n∑ i=1p j=1a ij p j=1n∑ i=1a ij

PAUL MILAN7VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1?i ?j?na ij? ij12...nTotal

1a11a12...a1n

n∑ j=1a 1j

2a22...a2n

n∑ j=1a 2j nann n∑ j=1a nj Tot.

1∑

i=1a i12∑ i=1a i2 n∑ i=1a in n∑ i=1n∑ j=ia ij n∑ j=1j i=1a ij

Pour∑

1?i 1?i?n1?j?pa ibj ?n∑ i=1a i? 2 =n∑ i=1a2i+2∑

1?i ibj(carré d"une somme) Démonstration :La première formule est directement lié à la définition de la somme double. Pour le carré d"une somme, on fait intervenir la symétrie du tableau double en- trée en séparant la somme en trois parties (le triangle supérieur est identique au triangle inférieur) : n∑ i=1a i? 2 =n∑ i=1a i×n∑ j=1a j=∑

1?i?n1?j?na

ij=triangle supérieur? 1? iExemple :(a+b+c)2=a2+b2+c2+2(ab+ac+bc)

PAUL MILAN8VERS LE SUPÉRIEUR

2. LE SYMBOLE PRODUITΠ

2 Le symbole produitΠ

2.1 Définition

Définition 3 :Soit(ai)une suite de nombres réels ou complexes. Soit deux entiers naturelsnetptels quep?n, on définit le produit suivant par : k=paquotesdbs_dbs45.pdfusesText_45
[PDF] mémoire luxe et communication

[PDF] mémoire marketing luxe

[PDF] la démocratisation du luxe

[PDF] problématique autour du luxe

[PDF] je m exerce cm1 pdf

[PDF] produit des racines d'un polynome du second degré

[PDF] somme des racines d'un polynome

[PDF] somme et produit des racines d'un trinome

[PDF] vincent niclo ce que je suis

[PDF] vincent niclo aimer est un voyage

[PDF] youtube vincent niclo dernier album

[PDF] youtube vincent niclo all by myself

[PDF] vincent niclo 5 ø titres

[PDF] vincent niclo ave maria

[PDF] ma vision du monde du travail