[PDF] [PDF] Séries - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



[PDF] Feuille dexercices n?21 : corrigé - Normale Sup

5 jui 2014 · La série est à termes positifs et son terme général est Exercice 3 (*) La somme partielle va également être télescopique :



[PDF] L2 - Math4 Exercices corrigés sur les séries numériques

Montrer par comparaison avec une intégrale que la série converge (d) Étudier le cas ? < 1 Exercice 3 Calculer la somme des séries ? n?1



[PDF] Séries - Exo7 - Exercices de mathématiques

Séries Exercices de Jean-Louis Rouget Retrouver aussi cette fiche sur qui est le terme général d'une série télescopique convergente puisque 1



[PDF] Séries numériques - Xiffr

n?0 u2 n diverge Application à l'étude de suites Exercice 56 [ 01070 ] [Correction] Calculer la limite 



[PDF] 02 - Séries numériques Exercices Corrigés (indispensables)

Séries télescopiques 1 La série proposée est clairement télescopique construite avec la suite (an) donnée par : ? n ? 



[PDF] Chapitre 1 : Séries numériques Exercice 11 - Université de Rennes 1

Chapitre 1 : Séries numériques Exercice 1 1 convergence d'une série numérique si la série ? De telles séries sont dites téléscopiques



[PDF] Exercices corrigés séries numériques

Exercice 6 : Discuter selon les valeurs de a la nature de la série ? La somme se calcule alors : elle est télescopique Posant vn = ln(n + 1) – ln(n + 



[PDF] MATHS SÉRIES NUMÉRIQUES ECS - MyPrepa

Exercice Extrait d'ESSEC 2016 Convergence et divergence d'une série Dès qu'on identifie une série téléscopique (série dont le terme général est de la 



[PDF] Feuille dexercices 2 : Séries numériques - SENEPIXEL

Exercice 2 : Etudier la nature des séries de terme général un en calculant la valeur des sommes partielles : 1 Série téléscopique :



[PDF] Séries numériques - Licence de mathématiques Lyon 1

Exercice 23 On considère la série numérique de terme général pour et : ( ( )) 1 Montrer que si cette série est convergente pour une valeur donnée 



[PDF] Exercice : Séries télescopiques - Donner du sens aux Sciences

Exercice : Séries télescopiques Justifier la convergence et donner la somme de rang et le case échéant la somme de la série dont le terme général est le 



[PDF] L2 - Math4 Exercices corrigés sur les séries numériques

Exercice 4 Étudier la nature des séries suivantes : Exercice 6 (1) Montrer que la série de terme général un = n ?1 + ln n ? ln(n + 1) est convergente 



[PDF] Séries numériques - Xiffr

Exercice 7 : [énoncé] (a) Si ? ? 0 il y a divergence grossière Si ? > 0 alors n2un ? 0 et la série est absolument convergente



Exercices corrigés -Séries numériques - calcul de sommes

Exercices corrigés - Séries numériques - calcul de sommes estimation du reste développements asymptotiques Calcul de sommes Exercice 1 - Somme télescopique 



[PDF] Séries - Exo7 - Exercices de mathématiques

Exercice 4 Calculer les sommes des séries suivantes après avoir vérifié leur convergence 1) (**) ?+? n=0 n+1 3n



[PDF] Chapitre 3 — séries numériques — exercices corrigés page 1

On en déduit que la série ?(un ? un?1) converge absolument si bien qu'elle converge La convergence de cette série télescopique permet de conclure que la 



[PDF] Feuille dexercices n?21 : corrigé - Normale Sup

5 jui 2014 · Exercice 1 (* à ***) • En écrivant n ? 1 3n = 1 3 × n 3n?1 ? 1 3n on reconnait une somme de deux séries



[PDF] 02 - Séries numériques Exercices - cpgedupuydelomefr

Chapitre 02 : Séries numériques – Exercices A l'aide d'une série télescopique montrer la convergence et calculer la somme de la série ?

:
Exo7

Séries

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

I : Incontournable

Exercice 1Nature de la série de terme général

1) (*)lnn2+n+1n

2+n1

2) (*)1n+(1)npn

3) (**)n+32n+1

lnn4) (**)1ln(n)ln(chn)

5) (**)arccos3q11n

26) (*)n2(n1)!7)

cos1pn n1pe

8) (**)ln2p

arctann2+1n

9) (*)

Rp=2

0cos2xn

2+cos2xdx10) (**)np2sin(p4

+1n )11) (**)e1+1n n

Nature de la série de terme général

1) (***)

4pn

4+2n23pP(n)oùPest un polynôme.2) (**)1n

aS(n)oùS(n) =å+¥p=21p n.

3) (**)unoù8n2N,un=1n

eun1.

4) (****)un=1p

noùpnest len-ème nombre premier (indication : considérer

åNn=1ln

111p
n

åNn=1ln(1+pn+p2n+:::)).

5) (***)un=1n(c(n))aoùc(n)est le nombre de chiffres denen base 10.

6) (*)

(Õnk=2lnk)a(n!)ba>0 etb>0.7) (**)arctan1+1n a arctan11n a

8) (**)

1n aånk=1k3=2.9) (***)Õnk=11+kn a1.

Nature de la série de terme général

1) (***)sinpn2n+1

2) (**)(1)nn+(1)n13) (**)ln

1+(1)npn

4) (***)einan

,cos(na)n etsin(na)n

5) (**)(1)nlnnn

(1)nP(n)Q(n)oùPetQsont deux polynômes non nuls

7) (****)(sin(n!pe))ppentier naturel non nul.

Calculer les sommes des séries suivantes après avoir vérifié leur convergence.

1) (**)

å+¥n=0n+13

n2) (**)å+¥n=32n1n

34n3) (***)å+¥n=01(3n)!

4) (*)

å+¥n=21pn1+1pn+12pn

5) (**)

å+¥n=2ln

1+(1)nn

6) (***)

å+¥n=0lncosa2

na20;p2 textbf7)

å+¥n=0th

a2 n2 n 1 converge. Montrer queun=n!+¥o1n . Trouver un exemple de suite(un)n2Nde réels strictement positifs telle

que la série de terme généralunconverge mais telle que la suite de terme généralnunne tende pas vers 0.

2diverge.

u n)etRun0dx1+xesont de mêmes natures. terme généralpu nn

connaissant la nature de la série de terme généralunpuis en calculer la somme en cas de convergence.

Pourn2N, on poseSn=u0+:::+un. Etudier en fonction dea>0 la nature de la série de terme généralun(Sn)a.

2a,n>1.

+13 14 +:::=ln2.

A partir de la série précédente, on construit une nouvelle série en prenantptermes positifs,qtermes négatifs,p

termes positifs ... (Par exemple pourp=3 etq=2, on s"intéresse à 1+13 +15 12 14 +17 +19 +111
16 18 2

Convergence et somme de cette série.

Convergence et somme éventuelle de la série de terme général

1) (**)un=2n33n2+1(n+3)!2) (***)un=n!(a+1)(a+2):::(a+n),n>1,a2R+donné.

n!(a+1)(a+2):::(a+n)quandntend vers l"infini (aréel positif donné).

å+¥k=n+11k

2quandntend vers l"infini.

Partie principale quandntend vers+¥de

1) (***)

å+¥p=n+1(1)plnpp

2) (**)ånp=1pp.

n2N;n6=p1n 2p2 et

ån2N

p2N;p6=n1n 2p2 . Que peut-on en déduire ?

å+¥n=0(1)n3n+1.

. Montrer que si la série de terme général

(un)2converge alors la série de terme général(vn)2converge et queå+¥n=1(vn)264å+¥n=1(un)2(indication :

majorerv2n2unvn). 3

ånk=0(1)k2k+1,n>0.

Correction del"exer cice1 N1.Pour n>1, on poseun=lnn2+n+1n 2+n1 .8n>1,unexiste u n=ln1+1n +1n

2ln1+1n

1n

2=n!+¥

1n +O1n 21n
+O1n 2=O1n 2.

Comme la série de terme général

1n

2,n>1, converge (série de RIEMANNd"exposanta>1), la série de

terme généralunconverge. 2.

Pour n>2, on poseun=1n+(1)npn

.8n>2,unexiste et de plusunn!+¥1n . Comme la série de terme général 1n ,n>2, diverge et est positive, la série de terme généralundiverge. 3.

Pour n>1, on poseun=n+32n+1

lnn. Pourn>1,un>0 et ln(un) =ln(n)lnn+32n+1 =ln(n) ln12 +ln 1+3n ln 1+12n n!+¥ln(n) ln2+O1n n!+¥ln2ln(n)+o(1):

Doncun=eln(un)n!+¥eln2lnn=1n

ln2. Comme la série de terme général1n ln2,n>1, diverge (série de RIEMANNd"exposanta61) et est positive, la série de terme généralundiverge. 4. Pour n>2, on poseun=1ln(n)ln(chn).unexiste pourn>2. ln(chn)n!+¥lnen2 =nln2n!+¥net unn!+¥1nln(n)>0. Vérifions alors que la série de terme général

1nlnn,n>2, diverge. La fonctionx!xlnxest continue,

sur]1;+¥[). Par suite, la fonctionx!1xlnxest continue et décroissante sur]1;+¥[et pour tout entierk

supérieur ou égal à 2,

1klnk>Rk+1

k1xlnxdx

Par suite, pourn>2,

nk=2klnk>

ånk=2R

k+1 k1xlnxdx=Rn+1

Doncunest positif et équivalent au terme général d"une série divergente. La série de terme généralun

diverge. 5.

Pour n>1, on poseun=arccos3q11n

2.unexiste pourn>1. De plusun!n!+¥0. On en déduit que

u nn!+¥sin(un) =sin arccos 3r11n 2! =s1 11n 2 2=3 =n!+¥s11+23n2+o1n 2 n!+¥r2 3 1n >0

terme général d"une série de RIEMANNdivergente. La série de terme général un diverge.

6. Pour n>1, on poseun=n2(n1)!.unexiste etun6=0 pourn>1. De plus, 5 un+1u n =(n+1)2n

2(n1)!n!=(n+1)2n

3n!+¥1n

!n!+¥0<1. D"après la règle de d"ALEMBERT, la série de terme généralunconverge. 7.

Pour n>1, on poseun=

cos1pn n1pe .unest défini pourn>1 car pourn>1,1pn 20;p2 et donc cosquotesdbs_dbs45.pdfusesText_45
[PDF] somme télescopique suite

[PDF] somme telescopique convergence

[PDF] somme théologique iii

[PDF] saint thomas d aquin wikipedia

[PDF] somme théologique saint thomas pdf

[PDF] le chat et les pigeons pdf

[PDF] obligation d être prof principal

[PDF] décret no 93-55 du 15 janvier 1993

[PDF] bo n°5 du 4 février 1993

[PDF] je ne vois dans tout animal qu'une machine ingénieuse these

[PDF] explication de texte philosophie rousseau discours sur l origine

[PDF] différents aspects du travail

[PDF] thomas d'aquin somme théologique explication

[PDF] prudence saint thomas d aquin

[PDF] angle nul définition