[PDF] Analyse Fonctionnelle TD 1 : Espaces métriques. Espaces vectoriels





Previous PDF Next PDF



Exercice 4 (fiche 2) Etablir si les ensembles sont ouverts fermés

Ouvert ? En d'autres termes si x € existe-il une boule ouverte (équivalent un voisinage



Ouverts et fermés chapitre 11.2 I Ouverts Ouverts et fermés chapitre 11.2 I Ouverts

Exercice VI.4. On dit que X est un espace séparable si et seulement si il existe un sous ensemble A de X dense dans X et 



topologie-des-espaces-normés.pdf topologie-des-espaces-normés.pdf

L'ensemble F est-il ouvert ? fermé ? borné ? Exercice 12 [ 03021 ] [Correction]. Soient E un espace vectoriel normé F un sous-espace fermé de E et G un sous 



Analyse Fonctionnelle TD 1 : Espaces métriques. Espaces vectoriels

Montrer que l'ensemble A = {xnn ≥ 0}∪{l} est compact. Corrigé : Soit (Ui)i∈I un recouvrement de A par une famille quelconque d'ouverts. A ⊂.



Exercices de mathématiques - Exo7

Montrer que l'ensemble des matrices de rang inférieur ou égal à p est un fermé de Mn Mn(R)GLn(R) est fermé en tant que complémentaire d'un ouvert. Soit n ⩾ ...



3M360 : Topologie et Calcul Différentiel Livret dexercices

Par définition des fermés les ensembles X Fi sont des ouverts. On a vu en Exercice 69.— Cet exercice ne sera pas corrigé! On note A le graphe de la.



I. Ouverts fermés

L'ensemble {1/n n ∈ N∗} n'est ni ouvert ni fermé dans R. 7. Si F est un sous-espace vectoriel de Rn contenant une boule ouverte



Exercices de licence

ensemble `a la fois ouvert et fermé et. B (x



Topologie

l'ensemble des suites convergentes vers 0



Feuille dexercices N. 1 : Topologie sur Rn

L'ensemble {(x y) ∈ R2 : x + 3y2 ≤ 1} est ouvert ? fermé ? borné ? Exercice 4. 1. Montrer que toute boule ouverte (fermée) est un ouvert (fermé).



Exercice 4 (fiche 2) Etablir si les ensembles sont ouverts fermés

Exercice 4 (fiche 2) Donc est ouvert équivalemment est fermé un fermé de ... ensemble des points contenus dans une boule qui rencontre à la fois et son.



topologie-des-espaces-normés.pdf

L'ensemble F est-il ouvert ? fermé ? borné ? Exercice 12 [ 03021 ] [Correction]. Soient E un espace vectoriel normé F un sous-espace fermé de E et G un.



Correction du contrôle continu N 1

La note totale de l'exercice sera 0 au minimum. Q1 : Il existe un espace métrique contenant 15 ouverts et 17 fermés. NON. Un ensemble O est ouvert ssi son 



3M360 : Topologie et Calcul Différentiel Livret dexercices

XI Elements de corrigés de l'examen 2017-2018 Corrigé de l'exercice 1.— ... Par définition des fermés les ensembles X Fi sont des ouverts.



Exercices de licence

ouverts de R et les ensembles de la forme {x/



Topologie et Calcul Différentiel 2MA216

Corrigé de l'exercice ?. Exercice complémentaire 3 : Montrer que l'ensemble. C = (x y) 2 R2 : 2x + y > 1 et x y. 0 . n'est ni ouvert



30/10/2013 Correction des exercices associés au cours sur les

30 oct. 2013 nombre fini des demi-plans qui sont des ensembles convexes. ... la droite 2x + y + 1 > 0



Exercices de mathématiques - Exo7

Montrer que l'ensemble des matrices diagonalisables de Mn(R) est connexe par arcs. Mn(R)GLn(R) est fermé en tant que complémentaire d'un ouvert.



Méthodes en topologie Montrer quune partie est ouverte

C) On montre que X est l'image réciproque d'un ouvert par une application Soit {x1...



Analyse Fonctionnelle TD 1 : Espaces métriques. Espaces vectoriels

2 oct. 2015 ce qui montre que S(x r) est l'intersection de deux fermés (grâce ... L'ensemble B?(l



Exercices corrigés - Ensembles - bibmathnet

Exercice 1 Montrer en utilisant la d´e?nition d’un ouvert et d’un ferm´e que : 1 Tout ouvert de Rn est une r´eunion de boules ouvertes 2 L’ensemble ] ab [ a



Searches related to ensemble ouvert et fermé exercice corrigé PDF

2 Montrer que les compacts de R sont exactement les ensembles fermés et bornés Corrigé : 1 (a)Le segment [a;a] n’est autre que le singleton fag Comme les (U i) i2Irecouvrent [a;b] il existe au moins un i 0 2Itel que a2U i 0 Ceci montre que U i 0 est un recouvrement ouvert (à l’évidence ?ni) de [a;a] et donc que a2A

Comment calculer les 4 éléments d'un ensemble?

4 éléments : Il n'y a qu'une partie à 4 éléments : l'ensemble E E lui-même. L'ensemble des parties de E E comporte donc 16 = 2 4 16 = 2 4 éléments. Soient deux ensembles E E et F F . Soit A A une partie de E?F E ? F. A A est-elle une partie de E E? de F F? En déduire une comparaison de P(E?F) P ( E ? F) avec P(E)?P(F) P ( E) ? P ( F).

Comment calculer l'extension d'un ensemble?

Écrire en extension (c'est-à-dire en donnant tous leurs éléments) les ensembles suivants : A={nombres entiers compris entre ?2 et 2?}. A = { nombres entiers compris entre 2 et 2 ? }.

Quels sont les 4 éléments d'un ensemble?

3 éléments : Il y a 4 parties à 3 éléments : { a, b, c }, { a, b, d }, { a, c, d }, { b, c, d }. { a, b, c }, { a, b, d }, { a, c, d }, { b, c, d }. 4 éléments : Il n'y a qu'une partie à 4 éléments : l'ensemble E E lui-même. L'ensemble des parties de E E comporte donc 16 = 2 4 16 = 2 4 éléments. Soient deux ensembles E E et F F .

  • Past day

Analyse Fonctionnelle - TD1 1

Master Mathématiques et Applications1ereannée Aix-Marseille Université

Année 2015-2016

Analyse Fonctionnelle

TD 1 : Espaces métriques. Espaces vectoriels normés

Avec corrigés

Les numéros de Théorèmes, Propositions, etc ... font référence aux notes de cours. Exercice 1Vérifier les propriétés suivantes dans un espace métrique(X;d)quelconque.

Les boules ouvertes sont ouvertes.

Les boules fermées sont fermées.

Les sphèr essont fermées.

Montrer que dans un espace vectoriel normé, les sphères sont d"intérieur vide. Est-ce encore le cas dans un

espace métrique quelconque?Corrigé : Soit x2Xetr >0. On veut montrer que la boule ouverte

B(x;r) =fy2X;d(x;y)< rg;

est un ouvert. Pour cela on se donne uny2B(x;r)quelconque et il nous faut trouver un rayonR >0tel que la

boule centrée enyet de rayonR B(y;R)soit entièrement contenue dansB(x;r).

On va vérifier queR=rd(x;y)convient. Tout d"abord, on remarque que cette valeur vérifieR >0car, par

hypothèse sury, nous avonsd(x;y)< r. Prenons maintenantz2B(y;R)quelconque et montrons qu"il appartient

àB(x;r). Par l"inégalité triangulaire nous avons d(x;z)d(x;y) +d(y;z)< d(x;y) +R=r; ce qui montre bien le résultat.

On peut ut iliserla caractérisation par les suites ou bien f aireune preuv esimil aireà la précédente en montrant que

le complémentaireB(x;r)c=fy2X;d(x;y)> rg; est un ouvert. On prend unyquelconque dans cet ensemble et on poseR=d(x;y)rqui est bien strictement positif par hypothèse sury.

Pour toutz2B(y;R)nous avons

d(x;y)d(x;z) +d(z;y)< d(x;z) +R et donc d(x;z)> d(x;y)R=r; ce qui établit le résultat attendu.

P ardéfinition nous a vons

S(x;r) =B(x;r)nB(x;r) =B(x;r)\B(x;r)c;

ce qui montre queS(x;r)est l"intersection de deux fermés (grâce aux deux résultats précédents) et que c"est donc

bien un fermé.

F. BOYER- VERSION DU2OCTOBRE2015

2 Analyse Fonctionnelle - TD1

Supposons maintenant que (X;d)est un espace vectoriel normé(E;k:k)(on rappelle qu"alorsd(x;y) =kxyk).

On considère une sphèreS(x;r)(avecr >0sinon on a affaire à un singleton qui est bien d"intérieur vide) et on se

donne un pointy2S(x;r). Pour tout" >0on construit le point z=y+"r (yx): Remarquons qu"on utilise bien sûr ici la structure d"espace vectoriel surE.

Ce pointzvérifie

kzyk="r kyxk="; il est donc aussi proche deyque l"on veut. Mais il vérifie également kzxk= 1 +"r kyxk=r+":

Ceci exprime que

B(y;")6S(x;r);

puisque nous avons trouvé un élément du premier ensemble qui n"est pas dans le second.

Ainsi, aussi petit que soit", la boule de centreyet de rayon"n"est pas contenue dans la sphèreS(x;r). Ceci étant

vrai pour tout pointy2S(x;r), nous avons bien montré qu"elle était d"intérieur vide.

Cette propriété est fausse dans le cas général. On se place dansRnet on poseX=SRn(0;1)[ f0gmuni de la

distance induite par la distance euclidienne deRn. DansXnous avons S

X(0;1) =SRn(0;1);

mais on a aussi S

X(0;1) =BX(0;2)nB

X(0;1=2);

et doncSX(0;1)est un ouvert non vide deX(en particulier il n"est pas d"intérieur vide).Exercice 2 (Compacts deR)On munitRde sa métrique usuelle définie par la valeur absolue.

1.

On veut montr erque tout intervalle fermé borné [a;b]Rest compact. On considère donc un recouvre-

ment de[a;b]par une famille(Ui)i2Id"ouverts deR. On pose alors A=fx2[a;b];tel que le segment[a;x]puisse être recouvert par une sous-famillefiniede(Ui)ig: On souhaite établir queb2A, ce qui montrera l"existence d"un sous-recouvrement fini de[a;b]. (a)

Montr erque a2A.

(b)

On note c= supA. Montrer quec2A.

(c) On suppose que c < b, montrer qu"il existec02]c;b[tel quec02A. (d)

Conclur e.

2. Montr erque les compacts de Rsont exactement les ensembles fermés et bornés.Corrigé : 1. (a)

Le se gment[a;a]n"est autre que le singletonfag. Comme les(Ui)i2Irecouvrent[a;b], il existe au moins un

i

02Itel quea2Ui0. Ceci montre queUi0est un recouvrement ouvert (à l"évidence fini) de[a;a]et donc

quea2A. (b)

On a déjà que cbet donc quecest en particulier fini. On suppose quec62A. Commec2[a;b], il existe un

i

02Itel quec2Ui0. L"ensembleUi0étant ouvert, il existe unr >0tel quea < cr < cet

[cr;c]Ui0:(1) Commec= supAetc62A, on peut même choisirrassez petit pour quecr2A. Par définition deA, il existe donc une partie finieJItelle que [a;cr][ i2JU i:

F. BOYER- VERSION DU2OCTOBRE2015

Analyse Fonctionnelle - TD1 3

En rajoutant l"indicei0àJet en utilisant (1), on obtient que [a;c] = [a;cr][[cr;c][ i2J[fi0gU i; et commeJ[ fi0gest fini, on obtient bien un sous-recouvrement ouvert de[a;c], ce qui montre quec2A, c"est une contradiction. (c) Supposons c < b. Commec2A, on peut trouverJIfinie telle que [a;c][ i2JU i: Soiti02Jtel quec2Ui0. CommeUi0est ouvert, il exister >0tel quec+rbet[c;c+r]Ui0. Il s"en suit que l"on a le sous-recouvrement ouvert fini suivant [a;c+r][ i2JU i; et doncc0=c+r2A. (d)

L "existencedu c0dans la question précédente contredit le fait quec= supAet donc le fait quec < b. On en

déduit quec=bet donc que tout le segment[a;b]peut être recouvert par une sous-famille finie de(Ui)i.

2.

On sait déjà que tout compact est fermé et borné (dans un espace métrique quelconque). Soit maintenant KR

un ensemble fermé et borné. La bornitude deKmontre qu"il existeR >0tel queK[R;R]. La question

précédente montre que[R;R]est un compact. Par hypothèseKest fermé dansRet donc c"est aussi un fermé de

[R;R](carK=K\[R;R]). D"après la PropositionI.12 , on déduit queKest lui-même compact.Exercice 3

Soit(X;d)un espace métrique et(xn)nune suite d"éléments deXqui converge vers une limitel. Montrer que l"ensembleA=fxn;n0g [ flgest compact.Corrigé : Soit(Ui)i2Iun recouvrement deApar une famille quelconque d"ouverts A[ i2IU i: On veut montrer qu"on peut en extraire un sous-recouvrement fini.

Commel2A, il existe un indicei02Itel quel2Ui0. Par ailleurs, commeUi0est un ouvert, nous pouvons trouver

" >0tel que

B(l;")Ui0:

Par définition de la convergence de la suite(xn)n, il existen00tel que

8nn0; d(xn;l)< ";

ce qui implique, d"après le choix de",

8nn0; xn2B(l;")Ui0:

Ainsi, tous les termes de la suite à partir du rangn0sont dansUi0.

On peut maintenant s"occuper desn01premiers termes, qui sont en nombre fini. Pour toutn < n0, il existein2I

tel quexn2Uin.

Au final nous avons bien montré

An 0[ k=0U ik;

F. BOYER- VERSION DU2OCTOBRE2015

4 Analyse Fonctionnelle - TD1

qui est un sous-recouvrement fini deA.Exercice 4 (Equivalence de distances)

Soit(X;d)un espace métrique.

1. Soit une autre distance sur l"ensembleX. Montrer que detsont topologiquement équivalentes()Elles définissent les mêmes suites convergentes: 2.

On définit maintenant par

=d1 +d: (a)

Montr erque est une distance uniformément équivalente àd. Sont-elles en général, Lipschitz équi-

valentes? (b) Montr erque (X;d)est complet, si et seulement si,(X;)l"est.Corrigé : 1.

Montrons les deux implications.

)On suppose que(X;d)et(X;)ont les mêmes ouverts.

Soit(xn)nune suite qui converge vers une limiteldans(X;d), on veut montrer qu"elle converge également

dans(X;).

Soit" >0donné. L"ensembleB(l;")est un ouvert de(X;)(voir Exercice1 ) et donc par hypothèse c"est

également un ouvert de(X;d)qui contientl. Il existe donc un nombre >0tel que B d(l;)B(l;"):(2)

On utilise maintenant la convergence de(xn)nversldans(X;d)pour obtenir l"existence d"un rangn0tel que

8nn0; d(xn;l)< :

Grâce à (

2 ), cela implique

8nn0; (xn;")< ":

Ceci étant valable pour tout choix intial de", on a bien montré la convergence de(xn)nversldans(X;).

On peut bien entendu échanger les rôles dedetpour prouverin fineque les deux espaces ont les mêmes

suites convergentes.

(On suppose que les deux espaces ont les mêmes suites convergentes. On se donne un ouvertUde(X;d)et

on veut montrer que c"est un ouvert de(X;). Soitx2Uquelconque, il s"agit de montrer l"existence d"un r >0tel que B (x;r)U:

On va raisonner par l"absurde et supposer que

8r >0; B(x;r)6U:

En spécifiant cette propriété pour les valeurs derégales à1=n,n2N, on obtient la propriété suivante

8n1;9xn2B(x;1=n);t.q.xn62U:(3)

On vient de construire une suite(xn)nvérifiant

(xn;x)<1=n;

elle converge donc verssdans(X;). On utilise maintenant l"hypothèse qui nous dit qu"elle converge égale-

ment versxdans(X;d). Autrement dit, nous avons d(xn;x)!n!+10:(4) CommeUest un ouvert de(X;d)et quexest dansU, il existe" >0tel queBd(x;")U. D"après (4), il existe un rangn0à partir duquel nous avonsd(xn;x)< ",nn0.

En particulier, nous avons établi quexn02B(x;")U. Ceci contredit (3) car nous avions construit lesxn

de sorte qu"aucun d"entre eux n"appartienne àU.

F. BOYER- VERSION DU2OCTOBRE2015

Analyse Fonctionnelle - TD1 5

2. (a) Pour tout r0, on pose'(r) =r1+rde sorte que='(d). La fonction'est continue, strictement croissante, vérifie'(0) = 0etlim+1'= 1. Ainsi, pour toutR >0, il exister >0tel que'(r)R(prendrer='1(R)siR <1et n"importe quelle valeur dersiR1). Ainsi les boules de rayonrdans(X;d)sont contenues dans les boules de rayonRdans (X;). Réciproquement pour toutR >0, on poser='(R)et on constate que toutes les boules de rayonrdans (X;)sont contenues dans les boules de rayonRdans(X;d). (b)

Comme les deux distances sont uniformément équi valentes,elles sont topologiquement équi valenteset donc

définissent les mêmes suites convergentes d"après la question 1. Par ailleurs, d"après la propriété précédente

elles définissent aussi les mêmes suites de Cauchy.

Ainsi(X;d)est complet si et seulement si(X;)l"est.Exercice 5 (Une distance exotique surR)Pour tousx;y2R, on posed(x;y) =jarctan(x)arctan(y)j.

1. Montr erque dest une distance surRtopologiquement équivalente à la distance usuelle. 2. Montr erque dn"est pas uniformément équivalente à la distance usuelle. 3.

Montr erque (R;d)n"est pas complet.Corrigé :

1.

Vérifier que dest une distance ne pose aucune difficulté. On utilise le caractère injectif dearctan. Nous allons

utiliser l"exercice 4 et montrer que (R;j:j)et(R;d)ont les mêmes suites convergentes. Soit (xn)nune suite qui converge versldans(R;j:j). Commearctanest continue surRnous en déduisons quearctan(xn)converge versarctan(l)ce qui implique bien d(xn;l) =jarctan(xn)arctan(l)jn!1!0: Réciproquement si(xn)nconvergeversldans(R;d)nousdéduisonsque(arctanxn)nconvergeversarctan(l). Commearctan(l)2]=2;=2[et quetanest continue sur]=2;=2[, nous déduisons que 2.

Pour tout n0, posonsxn=netyn=n+ 1. Nous avons

jxnynj= 1;8n0; d(xn;yn) =jarctanxnarctanynjn!1! j=2=2j= 0:

Ainsi,xnetynsont aussi proches que l"on veut dans(R;d)pourngrand mais restent à distance1dans(R;j:j).

Ceci prouve quedetj:jne peuvent être uniformément équivalentes. 3.

La suite (xn=n)ndéfinie à la question précédente est bien de Cauchy dans(R;d)(car la suitearctan(xn)est

convergente donc de Cauchy dans(R;j:j)!) mais elle ne converge pas. En effet, si elle convergeait vers une limite

l2R, on auraitquotesdbs_dbs4.pdfusesText_7
[PDF] exercice topologie ouvert fermé

[PDF] adhérence cellulaire définition

[PDF] la communication intercellulaire

[PDF] adherence cellulaire cours

[PDF] les jonctions cellulaires pdf

[PDF] migration cellulaire

[PDF] la chanson de craonne analyse

[PDF] le son è exercices

[PDF] son ai ei cp

[PDF] mots où on entend e

[PDF] de l'adjectif au nom ce2

[PDF] de ladjectif au nom

[PDF] souligne les adjectifs qualificatifs dans le texte

[PDF] texte avec adjectifs qualificatifs ce2

[PDF] texte avec adjectifs qualificatifs cycle 3