[PDF] Untitled 8 mars 2018 1) Une





Previous PDF Next PDF



LES DÉTERMINANTS DE MATRICES

7- Expansion par cofacteurs - méthode de calcul des déterminants . Déterminants de matrices carrées de dimensions 4x4 et plus .



Cours de mathématiques - Exo7

Autrement dit Aj est la matrice obtenue en remplaçant la j-ème colonne de A par le second membre B. La règle de. Cramer va nous permettre de calculer la 



Chapitre 1: Calculs matriciels

la méthode de Cramer. g. Définitions : • Une matrice A = (aij) de type m?n est un tableau rectangulaire comprenant m lignes et n colonnes formées de nombres 



Systèmes déquations linéaires

de Gauss en inversant la matrice des coefficients



Systèmes linéaires

Résolution par la méthode du pivot de Gauss substitution méthode de Cramer



Untitled

8 mars 2018 1) Une solution de l'équation 2x1 + x2 - x3 - 4x4 = 5 est un ... 1) Méthode 2 : La matrice dont les colonnes sont les cordonnées de u1 ...



?x1 z3?

Calculez les déterminants suivants avec la règle de Sarrus : a. ?2 ?1 –2 Cette méthode est très mauvaise ... 4x4 : 24 produits et 23 additions.



Chapitre 6. Déterminant dune matrice carrée

Cas d'une matrice 2 × 2. Définition. det( a b c d) 2èmeécriture Ca sert à calculer l'inverse de la matrice (si elle ... Exemple (méthode de Cramer). (.



Résolution numérique dun système linéaire

Il existe aussi une méthode reshape qui crée une nouvelle matrice (les éléments sont b) qui retourne l'unique solution d'un système de Cramer Ax = b. On.



Matrices inverses

Matrice inverse. Inversion. Pivot de Gauss. Gauss-Jordan. Décompositions. Inverse rapide. Inversion. Methode de Cramer : (méthode habituelle).



Chapitre 1: Calculs matriciels

trois méthodes de résolution : • la méthode de Gauss-Jordan ; • en utilisant la matrice inverse ; • la méthode de Cramer g Définitions : • Une matrice A = (aij) de type m×n est un tableau rectangulaire comprenant m lignes et n colonnes formées de nombres réels • L'élément situé au croisement de la ième ligne et de la

Comment utiliser la méthode de Cramer ?

Nous avons également vu que pour pouvoir utiliser la méthode de Cramer, la matrice doit être inversible. C’est-à-dire, la matrice des coefficients. Cela signifie que son déterminant est différent de zéro. La méthode de Cramer permet alors de calculer les solutions en utilisant des déterminants.

Qu'est-ce que la quatrième matrice ?

Cette quatrième matrice se caractérise par l’idée de mort et de renaissance, de destruction et de recréation du monde, de salut et de rédemption. Les personnes sensibles à cette matrice ont le souvenir de situations dangereuses dont elles sont sorties saines et sauves, voire victorieuses.

Qu'est-ce que la matrice de V de Cramer ?

Le résultat est une matrice de V de Cramer. Une telle analyse peut être vue comme une généralisation de l’aanalyse des correspondances multiples et est connue sous de nombreux noms, tels que analyse de corrélation canonique, analyse d’homogénéité et bien d’autres.

Comment résoudre un système linéaire à l'aide de la règle de Cramer ?

Le nombre d'opérations à effectuer pour résoudre un système linéaire à l'aide de la règle de Cramer dépend de la méthode utilisée pour calculer le déterminant. Une méthode efficace pour les calculs de déterminant est l'élimination de Gauss-Jordan ( complexité polynomiale ).

Untitled 1

Algebre

Cours Fondements S1 et S2

Exercices Corriges

Fevrier 2018

March 8, 2018

2

Contents

1 Systemes d'equations lineaires 4

1.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Matrices26

2.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Espaces vectoriels35

3.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Sous-Espaces Vectoriels 49

4.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Applications lineaires83

5.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Matrices Elementaires 112

6.1 Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3

1 Systemes d'equations lineaires

1.1 Enonces

Exercice 1{K=R. Nous considerons l'equation lineaire :x1+x2+x3+x4= 0.

1) Qu'est ce qu'une solution de cette equation ?

2) Donner l'ordre des variables ? Ce systeme est-il triangule ? Quelles en sont les variables libres ?

3) Donner les solutions de cette equation.

Exercice 2{K=R. Nous considerons l'equation lineaire : 2x1+x2x34x4= 5.

1) Qu'est ce qu'une solution de cette equation ?

2) Donner l'ordre des variables ? Ce systeme est-il triangule ? Quelles en sont les variables libres ?

3) Donner les solutions de cette equation comme somme d'une solution particuliere et des combinaisons

lineaires de 3 elements deR4.

4) Ecrire l'equation homogene associee. Quelles sont les solutions de cette equation ?

Exercice 3{K=R. Nous consideron le systeme d'equations lineaires : (E)"x

1+x2x3x4= 1

x

1+ 2x22x32x4= 0:

1) Donner un systeme trianguleE0ayant les m^emes solutions queE.

2) Quelles sont les variables libres deE0? Resoudre alorsE0.

Exercice 4{K=R. Nous considerons le systeme d'equations lineaires : (E)2 6 4x

1+x2x3x4= 1 (E1)

x

1+ 2x22x32x4= 0 (E2)

2x1+x2+x3+x4= 2 (E3):

1) Quel est l'ordre des variables du systeme lineaireE? Quel est l'ordre des equationsE1;E2;E3?

2) Donner un systeme trianguleE00ayant les m^emes solutions queE. Preciser les variables libres deE00?

3) Resoudre le systeme lineaireE.

4 Exercice 5{Nous considerons le systeme d'equations lineaires : (E)2 6 4x

1+x2+x3+x4= 3 (E1)

2x1x2+ 2x33x4= 0 (E2)

4x15x2+ 4x311x4=6 (E3):

1) Donner en utilisant avec precision l'algorithme de triangulation du cours un systeme triangule ayant les

m^emes solutions queE. Quelles sont les variables libres du systeme triangule obtenu ?

2 ) Determiner les solutions dansR4deEa l'aide de ces variables libres. Vous exprimerez ces solutions sous

forme de la somme d'un element deR4et de l'ensemble des combinaisons de deux elements deR4que l'on precisera.

3) Quelles sont alors les solutions du systeme sans second membre associe aE?

Exercice 6{Nous considerons le systeme d'equations lineaires a coecients reels : (E)2 6 4x

1x2+x3x4= 2 (E1)

2x12x2+ 3x34x4= 3 (E2)

x

1x2+x4= 3 (E3):

1) Quel est l'ordre des variables de ce systeme ? Donner en utilisant avec precision l'algorithme de

triangulation du cours un systeme triangule ayant les m^emes solutions queE. Quelles sont les variables libres

du systeme triangule obtenu ?

2 ) Determiner les solutions dansR4deEa l'aide de ces variables libres. On exprimera ces solutions sous

forme de la somme d'un element deR4et de l'ensemble des combinaisons d'elements deR4que l'on precisera.

3) M^emes questions avec le systeme d'equations lineaires :

(H)2 6 4x

1x2+x3x4= 2 (S1)

2x12x2+ 3x34x4= 3 (S2)

x

1+x2+x4= 3 (S3):

Exercice 7{K=R. Nous considerons le systeme d'equations lineaires : (E)2 6 4x

1+x2x3+x4= 1 (E1)

2x1+ 4x2+ 4x34x4= 0 (E2)

3x1+ 2x2+ 2x32x4= 4 (E3):

5

1) Quel est l'ordre des variables du systemeE? Quel est l'ordre des equationsE1;E2;E3?

2) Donner un systeme trianguleE0ayant les m^emes solutions queE. Quelles sont les variables libres de ce

systeme triangule ?

3) Resoudre le systeme d'equations lineairesE.

Exercice 8{Nous considerons le systeme d'equations lineaires : (E)2 6 4x

1+x2x3+x4= 1 (E1)

x

1+ 2x2+ 3x34x4= 0 (E2)

x

1+ 2x23x3+x4= 2 (E3):

1) Donner un systeme trianguleE0ayant les m^emes solutions queE. Quelles sont les variables libres de ce

systeme triangule ?

2) Resoudre ce systeme en exprimant ses solutions a l'aide des variables libres du systeme triangule ?

Exercice 9{Nous considerons le systeme d'equations lineaires : (E)2 6

4x3+x2+x1= 1 (E1)

2x3+ 2x2+x1= 0 (E2)

x

3+x2+ 2x1= 2 (E3):

1) Quel est l'ordre des variables du systeme lineaireE?

2) Quel est l'ordre des equationsE1;E2;E3?

3) Donner un systeme trianguleE0ayant les m^emes solutions queE.

4) Quelles sont les variables libres deE0? Quelles sont les solutions deE0? Quels sont les triplets de reels

(x1;x2;x3) de reels solutions deE?

Exercice 10{

Nous considerons le systeme de 3 equations a 4 inconnues : (E)2 6 664x

1+x2x3x4= 1 (E1)

x

1+x2+x32x4= 3 (E2)

2x1x2+ 2x3x4= 2 (E3)

3x1+ 3x33x4= 5 (E4):

6

1) Quel est l'ordre des variablesx1;x2;x3;x4de ce systeme. Trianguler ce systeme d'equations a l'aide de

l'algorithme de Gauss. Quelles sont les variables libres de ce systeme ?

2) Resoudre le systemeE. Verier les calculs.

Exercice 11{Nous considerons le systeme de 4 equations a 4 inconnues a coecients rationnels : (E)2 6 664x

1+ 2x2x3+ 2x4= 1 (E1)

2x1x2+x3+ 3x4= 1 (E2)

3x1+x2+ 5x4= 2 (E3)

x

13x2+ 2x3+x4= 0 (E4):

1) Quel est l'ordre des variablesx1;x2;x3;x4de ce systeme. Trianguler ce systeme d'equations a l'aide de

l'algorithme de Gauss. Quelles sont les variables libres de ce systeme ?

2) Trouver les quadruplets de nombres rationnels solutions du systeme (E).

3) Verier les calculs en testant une solution particuliere.

4) Resoudre le systeme :

(Eh)2 6 664x

1+ 2x2x3+ 2x4= 0 (E01)

2x1x2+x3+ 3x4= 0 (E02)

3x1+x2+ 5x4= 0 (E03)

x

13x2+ 2x3+x4= 0 (E04):

1.2 Corrections

Correction de l'exercice 1 :

1) Une solution de l'equationx1+x2+x3+x4= 0 est un quadruplet de reels (s1;s2;s3;s4) tels que

s

1+s2+s3+s4= 0.

La variablex1est la premiere variable, la variablex2la deuxieme,x3la troisieme etx4la quatrieme. L'equation

commence parx1. elle est d'ordre 1. Comme le systeme est constistue d'une seulle equation d'odre 1, l'ordre

des equations du systeme est strictement croissant. Le systeme est triangule. La variablex1est la seule

7 variable de t^ete. Les variablesx2;x3;x4sont les variables libres.

2) Le quadruplet de reels (x1;x2;x3;x4) est une solution de notre equation si et seulement si :

x

1=x2x3x4:

Ainsi , l'ensembleSdes solutions est :

S=f(x2x3x4;x2;x3;x4) tels quex2;x3;x42Rg;

=f+x2(1;1;0;0) +x3(1;0;1;0) +x4(1;0;0;1)) tels quex2;x3;x42Rg:

Ainsi, les solutions de notre equation sont l toutes les combinaisons lineaires des trois elements deR4:

(1;1;0;0), (1;0;1;0) et (1;0;0;1).

Correction de l'exercice 2 :

1) Une solution de l'equation 2x1+x2x34x4= 5 est un quadruplet de reels (s1;s2;s3;s4) tels que

2s1+s2s34s4= 5.

La variablex1est la premiere variable, la variablex2la deuxieme,x3la trosieme etx4la quatrieme. L'equation

commence parx1. elle est d'ordre 1. Comme le systeme est constistue d'une seulle equation d'odre 1, l'ordre

des equations du systeme est strictement croissant. Le systeme est triangule. La variablex1est la seule

variable de t^ete. Les variablesx2;x3;x4sont les variables libres.

2) Le quadruplet de reels (x1;x2;x3;x4) est une solution de notre equation si et seulement si :

x 1=12 x2+12 x3+ 2x4+52

Ainsi , l'ensembleSdes solutions est :

S=f(12

x2+12 x3+ 2x4+52 ;x2;x3;x4) tels quex2;x3;x42Rg; =f(52 ;0;0;0) +x2(12 ;1;0;0) +x3(12 ;0;1;0) +x4(2;0;0;1)) tels quex2;x3;x42Rg: 8 Ainsi, les solutions de notre equation sont les sommes du quadruplet de reels ( 52
;0;0;0) avec toutes les com- binaisons lineaires des trois elements deR4: (12 ;1;0;0), (12 ;0;1;0) et (2;0;0;1).

3) L'equation homogene associee est

2x1+x2x34x4= 5:

Ses solutions sont :

fx2(12 ;1;0;0) +x3(12 ;0;1;0) +x4(2;0;0;1)) tels quex2;x3;x42Rg:

Correction de l'exercice 3 :

1) NotonsEle systeme :

(E)"x

1+x2x3x4= 1 (E1)

x

1+ 2x22x32x4= 0 (E2):

Les variables de ce systeme sontx1;x2;x3;x4ordonnees naturellement (x1est la premiere variable, ...). Les

equationsE1etE2du systemeEsont d'ordre 1. Notre systeme est donc ordonne. Le systeme suivant a les m^emes solutions que (E) : (E0)"x

1+x2x3x4= 1 (E1)

x

2x3x4=1 (E2E1):

L'equationE1est d'ordre 1 de variable de t^etex1, l'equationE2E1est d'ordre 2 de variable de t^etex2.

Ainsi, le systemeE0est triangule. Ses variables libres sontx3etx4.

2) Pour resoudreE0, doncE, il sut de remonter les equations deE0. La derniere equation deE0donne

l'expression dex2a l'aide des variables libresx3etx4: x

2=x3+x41

9 Remplaconsx2par sa valeur dans les equations precedentes, on obtient : x

1+x3+x41x3x4= 1;

soit : x

11 = 1:

Nous obtenons donc l'expression dex1a l'aide des variables libresx3etx4:x1= 2. Ainsi, l'ensembleSdes solutions est :

S=f(2;x3+x41;x3;x4) tels quex3;x42Rg;

S=f(2;1;0;0) +x3(0;1;1;0) +x4(0;1;0;1) tels quex3;x42Rg:

Pour verier, nous constatons bien que (2;1;0;0) est une solution deEet que (0;1;1;0) et (0;1;0;1) sont

solutions du systeme sans second membre associe aE: (E0)"x

1+x2x3x4= 0

x

1+ 2x22x32x4= 0:

Correction de l'exercice 4 :

1) Le systemeEa quatre variables. L'ordre des variables du systemeEest l'ordre naturel :x1est la premiere

variable,x2la deuxieme,x3la troisieme etx4la quatrieme. Les coecients dansE1,E2etE3dex1sont non nuls. Les trois equationsE1,E2etE3sont donc d'ordre 1. Le systemeEest donc ordonne.

2) Demarrons l'algorithme de triangulation.

Etape 1: Utilisons (E1) pour faire monter l'ordre des equations suivantes. Le systeme suivant a m^emes

solutions queE: (E0)2 6 4x

1+x2x3x4= 1 (E1)

x

2x3x4=1 (E02=E2E1)

x2+ 3x3+ 3x4= 0 (E03=E32E1): 10 Les equationsE1;E02;E03sont respectivement d'ordre 1;2;2. Ce syteme est ordonne.

Etape 2: Utilisons la deuxieme equation pour faire monter l'ordre de la troisieme. Le systeme suivant a

m^emes solutions queE: (E00)2 6 4x

1+x2x3x4= 1 (E1)

x

2x3x4=1 (E02)

2x3+ 2x4=1 (E003=E03+E02):

Lesequations de ce dernier systeme sont d'ordre respectivement 1;2;3. Ce systeme est triangule. L'algorithme

de triangulation aboutit ici en deux etapes. Les variables de t^ete du systeme triangule precedentE00sontx1

pour la premiere equation,x2pour la deuxieme equation etx3pour la troisieme equation. Ainsi,x4est la seule variable libre de ce systeme triangule.

3) Resolvons le systeme trianguleE00qui a m^emes solutions que notre systemeE. La derniere quation de

E

00donne :

2x3=12x4; x3=12

x4:

Il vient alors :

x

2=x3+x41 =32

Puis :

x

1=x2+x3+x4+ 1 =32

12 + 1 = 2:

Les solutions deEsont donc l'ensemble :

f(2;32 ;12 x4;x4) tels quex42Rg; ou encore : f(2;32 ;12 ;0) +x4(0;0;1;1) tels quex42Rg; 11

Correction de l'exercice 5 :

1) L'ordre des variablesx1;x2;x3;x4est l'ordre naturel. Les trois equations deEsont d'ordre 1. Le

systeme est donc ordonne. Demarrons l'algorithme de triangulation.quotesdbs_dbs33.pdfusesText_39
[PDF] méthode de cramer 4 inconnues

[PDF] méthode de cramer 3 inconnues

[PDF] méthode de cramer 2 inconnues

[PDF] couverture de cahier ? imprimer

[PDF] travail couverture cahier maternelle

[PDF] couverture cahier arts plastiques

[PDF] décoration cahier maternelle

[PDF] couverture cahier art plastique 6eme

[PDF] cahier art plastique 6ème

[PDF] cahier d'art plastique original

[PDF] couverture cahier maternelle ps

[PDF] datation absolue svt

[PDF] interview metteur en scène théâtre

[PDF] en quoi le théâtre se différencie t il des autres genres littéraires

[PDF] question qu on pourrait poser a un acteur