[PDF] [PDF] MODULE 7 LOIS PROBABILITÉ PROBABILITÉ - Université du Québec





Previous PDF Next PDF



7 Lois de probabilité

calculer des probabilités sur la loi exponentielle On sait que (x ? 80) /12 sera une valeur négative puisque la probabilité demandée est.



Relations entre quelques lois de probabilités

liaison entre la loi binomiale et la loi binomiale négative. On particulier pour la loi normale



Actuariat IARD - ACT2040 Partie 4 - modèles linéaires généralisés

Exemple La loi Binomiale Négative de paramètres r et p





Surdispersion et modèle binomial négatif généralisé

variable aléatoire X à valeurs dans N suit une loi binomiale négative une loi exponentielle de dispersion de paramètres 03B8 et 03BB (notée X ~ ED (0 ...



FIABILITE MAINTENABILITE DISPONIBILITE

Le choix de la loi exponentielle dont la propriété La loi binomiale négative est la loi de probabilité de la variable aléatoire X qui comptabilise le.



Annexe A

la loi exponentielle est un cas particulier de la loi gamma (avec si r E N+ la distribution binomiale negative est parfois appelee.



4 Lois a priori

Dans le cas d'une loi binomiale négative de paramètre (n p)



Marche aléatoire dont la répartition de la longueur des étapes suit

(i) la longueur s de chaque étape suit la loi exponentielle négative. . (ii) parvenu au point terminant une étape



Chapitre 3 - Principales distributions de probabilités

Définition 10 La loi exponentielle de param`etre ? décrit la distribution d'une variable continue X qui ne prend que des valeurs positives selon la fonction de.



Regression avancée Chapitre 2 : la famille exponentielle et le

Loi normale (à densité par rapport à la mesure de Lebesgue sur R). N(µ 1) avec µ ? R. 1. ?. 2? exp(?. 1. 2. (y ? µ). 2. ) sur R. ? Loi exponentielle 



[PDF] 1 Rappels sur la loi exponentielle

Une propriété caractéristique de la loi exponentielle est la propriété dite « d'absence de mémoire » Lemme 1 : Soit X une v a à valeurs dans R+ de fonction 



[PDF] Terminale S - Loi uniforme Loi exponentielle - Parfenoff org

Loi uniforme Loi exponentielle I) Loi uniforme de probabilité sur [a : b] La loi de probabilité qui admet pour densité la fonction constante



[PDF] MODULE 7 LOIS PROBABILITÉ PROBABILITÉ - Université du Québec

La loi exponentielle donne le temps d'attente avant un événement lorsque le processus est régi par une loi de Poisson Dans le cas de la loi de Poisson la 



[PDF] loi exponentielle exercices corriges - Maurimath

LOIS EXPONENTIELLES - EXERCICES Exercice n°1 (correction) La durée de vie en heures d'un composant électronique est modélisée par la loi exponentielle 



[PDF] Fonctions génératrices

Soit X ; E(?) une v a suivant une loi exponentielle Son k-i`eme moment µX (k) := EXk se calcule facilement au moyen de k intégrations par parties et est 



[PDF] LOIS DE PROBABILITÉ USUELLES

La somme de deux v a indépendantes suivant les lois binomiales négatives de La somme de n v a indépendantes suivant la loi exponentielle E(?) suit la 



[PDF] Chapitre 13 : Intégration et loi exponentielle

En mathématiques l'intégration est le fait de calculer une intégrale C'est aussi une des deux branches du calcul infinitésimal appelée également calcul 



[PDF] Loi exponentielle et processus de Poisson homogéne

1 1 Notions sur la loi exponentielle et la loi de Poisson paramètre ? > 0 et on note X ' 2(?) si elle prend des valeurs entières non#négatives



Loi exponentielle - Wikipédia

Une loi exponentielle modélise la durée de vie d'un phénomène sans mémoire ou sans vieillissement ou sans usure : la probabilité que le phénomène dure au 



[PDF] Lois de probabilité - LAMA - Univ Savoie

Loi binomiale négative B?(n p) n ? 1 0 0 : pour k ? N 

:
[PDF] MODULE 7 LOIS PROBABILITÉ PROBABILITÉ - Université du Québec fi

7Lois de probabilité

Les lois de probabilité permettent de décrire les variables aléatoires sous la forme d"une "expérience type» puis d"analyser cette expérience en détail pour pouvoir déduire les principales caractéristiques de toutes les expériences aléatoires qui sont du même type. Letravailestfaituneseulefoismaisilsertàtouteslesexpériencessemblables. L"évaluation delaloideprobabilitéetdescaractéristiquesétanteffectuée, l"utilisateurn"aplusà"con-

struire" les probabilités mais simplement à identifier le modèle et à utiliser les résultats

connus sur le modèle. On s"intéressera ici à quelques lois qui sont très fréquentes dans

le domaine de la gestion.

Objectifs et compétences

L"étudiant sera en mesure de

•calculer des probabilités sur la loi binomiale •associer une expérience aléatoire à une loi binomiale •calculer des probabilités sur la loi de Poisson •associer une expérience aléatoire à une loi de Poisson •calculer des probabilités sur la loi exponentielle •associer une expérience aléatoire suit à loi exponentielle •calculer des probabilités sur la loi normale •utiliser les propriétés de la loi normale pour effectuer des calculs de probabilité

Loi binomiale

Considérons l"expérience qui consiste à répéternfois une expérience aléatoire de façon

indépendante telle que le résultat de chaque expérience est un succès ou un échec avec

une probabilité de succèsπ. On peut représenter cette expérience type par la figure

2 Chapter 7 Lois de probabilité

suivante : PosonsXla variable aléatoire qui donne le nombre total de succès sur lesntentatives. La variable aléatoireXsuit une loi Binomiale de paramètresnetπ, notéeBin(n,π).

Le support de cette variable aléatoire est

S

X={0,1,2,···n}

et la loi de probabilité est donnée par f(x) =?n x? x(1-π)n-xpourx= 0,1,2,...n où0< π <1et?n x? =n! x!(n-x)! Les principales caractéristiques numériques sont :

Moyenne :E(X) =nπ

Variance :V ar(X) =nπ(1-π)

Ecart type :?

nπ(1-π) Voici un graphique représentant quelques lois binomiales avec une même valeur den, (n= 20) et quelques valeurs deπ.

Lois binomiales

x fonction de probabilité

0 5 10 15 20

0.0 0.05 0.10 0.15 0.20 0.25

Pi=0.1

Pi=0.25

Pi=0.5

Pi=0.75

Loi binomiale 3

Remarque 7.1Le cas particulier de la loi binomiale avec paramètren= 1etπest à la base de plusieurs modélisation. Il est aussi connu comme étant la loi deBernoulliou expérience de Bernoulli. La notion de succès et d"échec dans le cadre d"une loi binomiale est purement arbitraire. Ainsi, le fait qu"une nouvelle entreprise ne passe pas le cap de la première année peut être qualifié de succès si on s"intéresse au nombre de fermetures tout comme le fait

qu"un employé ne soit pas présent au travail une certaine journée peut être un succès si

on veut étudier le taux d"absentéisme. Exemple 7.1?On sait que la probabilité qu"une personne choisie au hasard travaille dans le domaine de l"administration ou de la comptabilité est de 1/6. Si on choisit au hasard 3 personnes, quelle est la probabilité d"avoir au moins 2 personnes sur 3 qui travaillent dans l"administration ou la comptabilité ? Solution :PosonsXla v.a. qui donne le nombre de personnes sur 3 qui travaillent dans l"administration ou la comptabilité,X≂Bin(3,1/6). On cherchePr(X≥2) :

Pr(X≥2) =f(2) +f(3)

=?3 2?? 1 6? 2?5 6? 3-2 +?3 3?? 16? 3?5 6? 0 =572+1216= 7.4074×10 -2 = 0.0741 Exemple 7.2?Dans une entreprise les ressources humaines font passer une entrevue préliminaire aux candidats et on sait par expérience que seulement 50% passent au travers de ce premier tri. Quelle est la probabilité que sur 5 candidats, il y en ait 4 ou plus qui passent la première entrevue ? Solution :PosonsXla v.a. qui donne le nombre de candidats sur 5 qui passent la première entrevue,X≂Bin(5,1/2)et on cherchePr(X≥4):

Pr(X≥4) =f(4) +f(5)

=?5 4?? 1 2? 4?1 2? 1 +?5 5?? 12? 5 =316

4 Chapter 7 Lois de probabilité

Exemple 7.3Les données disponibles sur la survie des entreprises démontrent que les nouvelles entreprises du domaine des communications ont une probabilité de passer le cap des 2 ans de0.20. Si 10 entreprises se sont implantées, quelle est la probabilité d"avoir au moins 4 "survivantes» après 2 ans ? Solution :PosonsXla v.a. qui donne le nombre d"entreprises qui passent le cap des deux ans. C"est une v.a. de loiBin(10,0.2)et on cherchePr(X≥4). Or

Pr(X≥4) = 1-Pr(X <4) = 1-

3? x=0 fX(x) = 1- 3? x=0 ?10 x? (0.2) x(0.8)10-x = 1-.87913 =.12087 Exemple 7.4?Dans l"exemple précédant, si on sait qu"une entreprise en communi- cation qui passe le cap des 2 ans a une probabilité de2/3de devenir une grande entre- prise(plus de 50 employés), quelle est la probabilité d"obtenir 4 grandes entreprises en communication sur les 10 qui se sont implantées ? Solution:PosonsXlav.a. quidonnelenombred"entreprisessur10quisetransforment en une grande entreprise. C"est une v.a. de loiBin(10,π), oùπest la probabilité qu"une nouvelle entreprise en communication se transforme en une grande entreprise. Pour que la nouvelle entreprise devienne une grande entreprise, il faut qu"elle survive deux ans (disons l"événementA) et qu"elle se transforme en grande une entreprise (dis- ons l"événementB). Or

π= Pr(A∩B) = Pr(A)Pr(B|A)

2

1023=215puisque la probabilité de passer le cap des 2 ans est de 0.2 par le problème précédantet que la donnée du problème donnePr(B|A) = 2/3.

On a doncX≂Bin(10,

2

15)et on cherchePr(X≥4). Or

Pr(X≥4) = 1-Pr(X <4) = 1-

3? x=0 fX(x) = 1- 3? x=0 ?10 x?? 2 15? x?13 15? 10-x = 1-.96596 =.03404 Remarque 7.2Pour qu"une variable aléatoire suive une loi binomiale, il faut que le

nombre de répétitions de l"expérience soit fixé a priori. De plus, les expériences doivent

Loi binomiale 5

être indépendantes c"est-à-dire que le résultat d"une des expériences n"affecte en aucune

façon les autres. Considérons l"exemple d"une population de 120 entreprises d"un certain secteur et sup- posons que sur ce nombre il y en a 51 qui sont conformes à la norme ISO 9200. Une expérience aléatoire consiste à prendre 15 entreprises au hasard parmi les 120. On veut évaluer la probabilité qu"il y ait au moins 8 entreprises parmi les 15 qui sont conformes

à la norme ISO 9200. Même si on répète 15 fois l"expérience consistant à choisir une

entreprise, ce ne sont pas des expériences indépendantes : il n"y a que 120 entreprises et chaque fois qu"une entreprise est choisie à un tirage cela affecte la probabilité au tirage suivant. Exemple 7.5?Un transporteur aérien doit remplir un avion de 330 places. Il vend

340 billets en sachant qu"il y a une probabilité de 2.5% qu"un passager ne se présente

pas. Solution :PosonsXla v.a. qui donne le nombre de passagers qui se présenteront sur les 340 billets vendus. On aX≂Bin(340,0.975). Cela veut dire qu"en moyenne il y aura340?0.975 = 331.5passagers par vol. En moyenne il y aura 1.5 passagers qui n"auront pas de place. Comme passager on peut vouloir connaître la probabilité qu"il manque de place. Cela s"exprime parPr(X >330)et en utilisant la formule 1

Pr(X >330) =f(331) +f(332) +···+f(340)

=?340331? 0.975

331(0.025)340-331+···

= 0.65381 Exemple 7.6?Dans un programme universitaire il y a 30% des étudiants qui dé- passent le temps prévu pour terminer le programme et 10% qui terminent au moins une session avant la fin du temps prévu. On sait que 3% des étudiants qui dépassent le temps ont une cote générale "A", que 20% de ceux qui finissent exactement dans les temps ont cette cote et que ce taux devient 50% pour ceux qui finissent avant. Sur une cohorte de

15 étudiants dans le programme quelle est la probabilité qu"il y ait au moins 4 étudiants

avec la cote générale "A" ? Solution :Considérons la v.a.Xqui donne le nombre d"étudiants sur 15 qui auront la cote générale "A". C"est une v.a. qui admet une loi binomiale de paramètresn= 15et π:la probabilité qu"un étudiant au hasard obtienne cette cote. On cherchePr(X≥4). Pour utiliser la fonction de probabilité de la loi binomiale il faut déterminer la valeur du paramètreπ.

1Ce calcul peut se faire à la calculatrice mais il est plus simple et surtout plus rapide d"utiliser un logiciel

comme EXCEL.

6 Chapter 7 Lois de probabilité

Si on poseB

1:"un étudiant dépasse le temps prévu",B2:"un étudiant termine exacte-

ment dans les délais,B

3un étudiant dépasse le temps prévu etA:"obtient la cote A".

L"utilisation de la première règle de Bayes permet d"obtenirπ= 0.179. On a alors

Pr(X≥4) = 1-Pr(X <4)

= 1-(f(0) +f(1) +f(2) +f(3)) oùf(x) =? 15 x?0.179x(1-0.179)15-x.

L"application de la formule donne

f(0) = 15!

0!15!×0.1790×0.82115= 5.1898×10-2

f(1) =15!

1!14!×0.1791×0.82114= 0.16973

f(2) = 15!

2!13!×0.1792×0.82113= 0.25903

f(3) = 15!quotesdbs_dbs33.pdfusesText_39
[PDF] fonction logarithme népérien terminale es

[PDF] fonction rationnelle ensemble de définition

[PDF] fonction rationnelle domaine de définition

[PDF] dérivée de ln lnx

[PDF] primitive de x

[PDF] primitive de x^2

[PDF] dérivées successives exercices corrigés

[PDF] dérivée successive

[PDF] dérivées n-ièmes usuelles

[PDF] dérivée nième de sin

[PDF] dérivée nième polynome

[PDF] dérivée n-ième d'une fonction

[PDF] dérivée nième de cos^3

[PDF] derivee nieme de cos(ax)

[PDF] dérivées partielles exercices corrigés