[PDF] Les Développements Limités dit que f admet un





Previous PDF Next PDF



Développements limités

Développements limités b) DL en l'infini. Remarque 2.3 (Développement limité en l'infini). Étant donnée une fonction f définie au voisinage de ±? 



DEVELOPPEMENTS LIMITÉS USUELS Le développement limité de

DEVELOPPEMENTS LIMITÉS USUELS. Le développement limité de MAC LAURIN au voisinage de x = 0 à l'ordre "n" pour une fonction "f" indéfiniment dérivable 



Développements limités I Généralités

On dit f admet un développement limité à l'ordre n au voisinage de l'infini. (noté DLn(+?) ou DLn(??)) si f peut s'écrire sous la forme : f(x) = a0 +.



Feuille dexercices 10 Développements limités-Calculs de limites

à l'ordre 5 donne le polynôme de Taylor du développement limité de tan( ) à e) Il faut factoriser par le terme qui tend le plus vite vers l'infini.



toto

de ƒ au voisinage de +? (ou - ?). Exercices - Exemples. E6. = 00 a. Déterminer le développement limité d'or- dre n au voisinage de l'infini de la fonc-.



Développements limités et asymptotiques

Nous allons à présent voir sur deux exemples comment obtenir le développement asymptotique d'une fonction au voisinage de l'infini. 3.1 Développements 



Développements limités

Développements limités b) DL en l'infini. Remarque 2.3 (Développement limité en l'infini). Étant donnée une fonction f définie au voisinage de ±? 



Les Développements Limités

dit que f admet un développement limité à l'ordre n en x0 en abrégé DLn(x0)



Calcul différentiel sur les fonctions réelles 1 Rappels sur les

qui selon la valeur de l'argument nous donne un développement limité ou Déterminer l'équation h de l'asymptote `a Cf au voisinage de l'infini



Développements limités de fonctions réelles

qu'il existe un intervalle infini I tel que a ? I ? E. La fonction réelle f admet P : x ?? ? P(x) comme développement limité d'ordre n en a si et 



[PDF] developpements limités usuels

DEVELOPPEMENTS LIMITÉS USUELS Le développement limité de MAC LAURIN au voisinage de x = 0 à l'ordre "n" pour une fonction "f" indéfiniment dérivable 



Développement limité à linfini - Gilles Dubois

Soit f une fonction définie 'au voisinage de l'infini' c'est à dire dans un intervalle du type ]a+?[ ou bien du type ]-?a[ ou leur réunion



[PDF] Développements limités

28 mar 2017 · Développements limités Bernard Ycart Les développements limités sont l'outil principal d'approximation locale des fonc-



[PDF] Développements limités

Développements limités DL en un point DL en l'infini Cas particulier des DL0 et DL1 Quelques propriétés Opérations 1 Formule de Taylor-Young



[PDF] Feuille dexercices 10 Développements limités-Calculs de limites

Développements limités-Calculs de limites Exercice 1 Etablir pour chacune des fonctions proposées ci-dessous un développement limité de en 0 à l' 



[PDF] Développements limités

On dit f admet un développement limité à l'ordre n au voisinage de l'infini (noté DLn(+?) ou DLn(??)) si f peut s'écrire sous la forme : f(x) = a0 +



[PDF] Développements limités - Exo7 - Cours de mathématiques

Pour a ? I et n ? on dit que f admet un développement limité (DL) au point a et à l'ordre n s'il existe des réels c0c1 cn et une fonction ? : I ? 



[PDF] Développements limités équivalents et calculs de limites

Développements limités équivalents et calculs de limites Pascal Lainé 3 Exercice 12 Déterminer le développement limité à l'ordre 4 au voisinage de



[PDF] Les développements limités - LAMA - Univ Savoie

Développements limités Définition Soient n ? N et f : I ?? R une fonction continue en x0 ? I f possède un développement limité à l'ordre n en x0 s'il 

  • Quel est le développement limité ?

    En mathématiques, les développements limités permettent de trouver plus simplement des limites de fonctions, de calculer des dérivées, de prouver qu'une fonction est intégrable ou non, ou encore d'étudier des positions de courbes par rapport à des tangentes. Ils permettent également l'obtention d'équivalents.
  • Comment choisir l'ordre d'un développement limité ?

    Un développement limité peut être effectué à plusieurs ordres, il permet de donner une approximation d'une fonction par un polynôme au voisinage d'un point. On a par exemple sin(x)=x+o(x) comme DL de sin en 0. Mais on peut aller à un ordre plus élevé et le DL, à l'ordre 3 par exemple : sin(x)=x?x33
  • Comment calculer les développement limité ?

    Pour calculer le développement limité d'une fonction réciproque f?1 au voisinage de f(a) :

    1on calcule le développement limité de f en a .2on écrit de façon formelle le développement limité de f?1 en f(a) : f?1(f(a)+h)=a+a1h+?+anhn+o(hn). 3on écrit que f?f?1(x)=x f ? f ? 1 ( x ) = x .
  • On dit que f admet un développement limité à l'ordre n en x0 s'il existe des réels a0,…,an a 0 , … , a n et une fonction ? définie sur I et qui tend vers 0 quand x tend vers x0 tels que f(x)=a0+a1(x?x0)+?+an(x?x0)n+(x?x0)n?(x).
Les Développements Limités

Abderezak Ould Houcine, 2003-2004.

Les Développements Limités

Définition.SoitIun intervalle etf:I!Rune application. Soitx0un élément deIou une extrémité deI(exemple : siI= ]a;b[alorsx0peut être dans[a;b]). Soitnun entier naturel. On dit quefadmet undéveloppement limitéà l"ordrenenx0, en abrégéDLn(x0), s"il existe des réelsa0;;anet une fonction":I!Rtels que : pour toutx2I; f(x) =a0+a1(xx0)++an(xx0)n+(xx0)n"(x);aveclimx!x0"(x) = 0 Le polynômeP(x) =a0+a1(xx0) ++an(xx0)nest appellé lapartie parincipaleou tout simplement ledéveloppement limitéà l"ordrenenx0def.

Exemple.Comme1xn+1= (1x)(1 +x++xn), on a

1xn+11x=(1x)(1 +x++xn)1x= 1 +x++xn

d"où

11x= 1 +x++xnxn+11x= 1 +x++xn+xnx1x

Donc la fonctionf(x) =11xadmet un DL au point 0 à l"ordren, avec dans ce cas"(x) =x1x. On ne cherche généralement pas à déterminer la fonction"(x).

Propriétés.

(1)(Unicité d"un DL). Sifadmet unDLn(x0), alors ce développement limité est unique.

Autrement dit si :

a

0+a1(xx0) ++an(xx0)n+ (xx0)n"1(x)

=b0+b1(xx0) ++bn(xx0)n+ (xx0)n"2(x); aveclimx!x0"1(x) = 0etlimx!x0"2(x) = 0, alorsa0=b0;a1=b1;;an=bn. (2)(Troncature d"un DL). Sifadmet un DL à l"ordrenenx0, f(x) =a0+a1(xx0) ++an(xx0)n+ (xx0)n"1(x) alors pour toutpn, elle admet un DL à l"ordrepenx0, obtenu par troncature, f(x) =a0+a1(xx0) ++ap(xx0)p+ (xx0)p"2(x): (3)Sifadmet un DL à l"ordrenenx0, f(x) =a0+a1(xx0) ++an(xx0)n+ (xx0)n"1(x) alorslimx!x0f(x)existe et finieet est égale àa0. C"est clair il suffit de calculer la limite. Ce critère sert généralement à démontrer qu"une fonction n"admet pas de DL. 1 Exemple.La fonctionln(x)n"admet pas de DL en 0, carlimx!0ln(x) =1. (4)Sifadmet un DL à l"ordrenenx0, avecn1, f(x) =a0+a1(xx0) ++an(xx0)n+ (xx0)n"1(x)

alorsfest dérivable enx0, si elle est définie enx0, (sinon, c"est le prolongement par continuité de

fenx0), et la dérivée defenx0esta1. (5)Le DL à l"ordrenen 0 d"un polynômeP(x)de degrénest lui même. Attention.En revanche sifadmet un DL à l"ordre2enx0,f(ou son prolongement) n"est pas forcement deux fois dérivable enx0, contre exemplef(x) =x3sin(1x )au point0. Importance des développements limités à l"origine Critère.fadmet un développement limité à l"ordrenenx0si et seulement si la fonctiong définie parg(h) =f(x0+h)admet un développement limité à l"ordrenen 0. Plus précésiment, sia0+a1h++anhnest le DL degen0, alorsa0+a1(xx0)++an(xx0)n est le DL defenx0. En pratique.Si je veux calculer le DL defà l"ordrenenx0, je calcule le DL deg(h) =f(x0+h) à l"ordrenen 0, ensuite je remplace dans le DL trouvéhpar(xx0). Exemple.Calculons leDLde la fonctionf(x) = cosxà l"ordre 3 au point2 . On considère la fonction g(h) = cos(2 +h)et on calcule son DL à l"ordre 3 au point 0.

On sait quecos(2

+h) = cos(2 ):cos(h)sin(2 ):sin(h) =sin(h). On a sin(h) =h+h36 +h3"1(h);au voisinage de0:

Maintenant on remplacehpar(x2

)et on trouve le DL def(x) = cosxà l"ordre 3 au point2 cos(x) =(x2 ) +16 (x2 )3+ (x2 )3"2(x); avec"2(x) ="1(x2 ). On a bien sûrlimx!=2"2(x) = 0. Etant donné que le calcul des DL à un pointx0se ramène au calcul des DL au point 0 on se

contentera dans la suite à considérer seulement les DL à l"origine 0.Opérations sur les Développements limités

Somme des DL.Sifadmet unDLn(0),

f(x) =a0+a1x++anxn+xn"1(x); etgadmet unDLn(0), g(x) =b0+b1x++bnxn+xn"2(x); alorsf+gadmet unDLn(0), qui est donné par la somme des deux DL : (f+g)(x) =f(x) +g(x) = (a0+b0) + (a1+b1)x++ (an+bn)xn+xn"(x) 2

Produit des DL.Sifadmet unDLn(0),

f(x) =a0+a1x++anxn+xn"1(x); etgadmet unDLn(0), g(x) =b0+b1x++bnxn+xn"2(x); alorsf:gadmet unDLn(0), obtenu en ne conservant que les monômes de degréndans le produit (a0+a1x++anxn)(b0+b1x++bnxn): Exemple.Calculons leDLde la fonctionf(x) = cosx:sinxà l"ordre 5 au point0. On a : sinx=xx36 +x5120 +x5"1(x);cosx= 1x22 +x424 +x5"2(x):

On calcule le produit

(xx36 +x5120 )(1x22 +x424 en ne gardant que les monômes de degré5, (xx36 +x5120 )(1x22 +x424 ) =xx:x22 +x:x424 x36 +x36 :x22 ++x5120

Donc on a

f(x) = cosx:sinx=x(23 )x3+ (124 +112
+1120
)x5+x5"(x):

Quotient des DL.Sifadmet unDLn(0),

f(x) =a0+a1x++anxn+xn"1(x); etgadmet unDLn(0), g(x) =b0+b1x++bnxn+xn"2(x); aveclimx!0g(x)6= 0, (autrement ditb06= 0), alorsfg admet unDLn(0), obtenu par la devision selon les puissances croissantes à l"ordrendu polynômea0+a1x++anxnpar le polynôme b

0+b1x++bnxn.

Exemple.Calculons leDLde la fonctionf(x) = sinx=cosxà l"ordre 3 au point0. Commelimx!0cosx6= 0, on peut appliquer le critère précédent. On a sinx=xx36 +x3"1(x);cosx= 1x22 +x3"2(x): Appliquons la division selon les puissances croissantes : x16 x3112 x2x12 x3x

33x+13

x3

Par conséquent,

sinxcosx=x+13 x3+x3"(x). Attention.Le critère précédent dit tout simplement que silimx!0g(x)6= 0, alorsfg admet unDLn(0)et il ne nous dit pas silimx!0g(x) = 0, alorsfg n"admet pas unDLn(0)!! Il se peut quelimx!0g(x) = 0, avecfg admet unDLn(0).

Exemple.La fonctionsinxx

admet un DL d"ordre 3 en 0, alors quelimx!0x= 0. 3

Traitement du caslimx!0g(x) = 0.

(1).limx!0f(x)6= 0. Dans ce cas,f=gn"admet pas deDLn(0), carlimx!0f(x)g(x)=1. (2).limx!0f(x) = 0. Dans ce cas le DL defest de la forme f(x) =apxp++anxn+xn"1(x); et celui degde la forme g(x) =bqxq++bnxn+xn"2(x); avecap6= 0etbq6= 0.

On traite le quotientf=gselon les valeurs depetq.

p < q. Alors fg =apxp++anxn+xn"1(x)b qxq++bnxn+xn"2(x)= ap++anxnp+xnp"1(x)b qxqp++bnxnp+xnp"2(x): Commeqp >0, etap6= 0, on alimx!0f(x)g(x)=1et par conséquentf=gn"admet pas de DL n(0). pq. Alors fg =apxp++anxn+xn"1(x)b qxq++bnxn+xn"2(x)= apxpq++anxnq+xnq"1(x)b q++bnxnq+xnq"2(x):

Dans ce cas on est raméné au cas oùlimx!0g(x)6= 0. Donc pour calculer le DL def=gà l"ordre

nau point0, on calcule le DL defestgàl"ordren+q, et ensuite on utilise la méthode de la division selon les puissances croissantes.

Example.Calculons le DL deln(1 +x)sinxà l"ordre 3 en 0. Il faut déterminerqtel quebq6= 0dans le DL

desinx. On a sinx=xx33! +x55! +x5"(x): Par conséquent le premier coefficient non-nul estb1. Doncq= 1. On doit calculer leDLdeln(1 +x) etsinxà l"ordre3 +q= 4. On a sinx=xx33! +x4"1(x);ln(1 +x) =xx22 +x33 x44 +x4"2(x): Donc ln(1 +x)sinx=1x2 +x23 x34 +x3"2(x)1x23! +x3"1(x): Par conséquent on a un DL d"ordre3en haut et en bas et aveclimx!x0g1(x)6= 0, oùg1(x) = 1x23! x

3"1(x). Donc on peut appliquer le critère précédent et faire la division selon les puissances croissantes.

Composition des DL.Sifadmet unDLn(g(0)),

f(x) =a0+a1(xg(0)) ++an(xg(0))n+ (xg(0))n"1(x); etgadmet unDLn(0), g(x) =b0+b1x++bnxn+xn"2(x); alors la fonction composéfg(x) =f(g(x))admet unDLn(0), obtenu en remplaçant le DL deg dans celui defet en ne gardant que les monômes de degrén. 4 En pratique.Si je veux calculer le DL def(g(x))en0, je calcule le DL defeng(0)et je trouve un

DL de la forme

f(x) =a0+a1(xg(0)) ++an(xg(0))n+ (xg(0))n"1(x): Ensuite je remplace le DL degdans celui defet je ne garde que les monômes de de degrén. (Dans les calculs le termeg(0)disparaît). Exemple.Calculer le DL deecosxà l"ordre 3 en0. Commecos0 = 1, on calcule le DL deexen 1. Pour cela, d"après ce qui précède, on calcule leDLde la fonctione1+hen 0. On a e

1+h=e:eh=e(1 +h+h22

+h33! +h3"1(h)):

Pour trouver le DL deexen 1, on remplacehparx1

e x=e(x+(x1)22 +(x1)33! + (x1)3"1(x1)):

Ensuite on remplace le DL decosx= 1x22

+x3"2(x), dans le précédent, en ne gardant que les monômes de degré3 e cosx=e((1x22 ) +(1x22 1)22 +(1x22 1)33! + (1x22

1)3"1(1x22

1)) =ee2 x2+x3"3(x): Attention.Le critère précédent dit tout simplement que sifadmet unDLn(g(x0))etgadmet un DL n(x0), alors la fonction composéfg(x) =f(g(x))admet unDLn(x0)et il ne nous dit rien dans le cas oùfetgn"admettent pas deDL. Il se peut quefadmet un DL etgn"admet pas de DL, alors que fgadmet un DL. Exemple.La fonctionf(x) =cos(px)admet unDL2(0)alors que la fonctionx7!pxn"admet pas de DL en0à l"ordre 2 carx7!pxn"est pas dérivable en 0 donc elle n"admet pas de DL d"ordre 1. Primitivation des DL.Sif:I!Radmet unDLn(0)etFest une primitive defsur I(autrement ditFest dérivable surIetF0(x) =f(x)pour toutx2I), alorsFadmet un DL n+1(0), obtenu en intégrant leDLdef.quotesdbs_dbs33.pdfusesText_39
[PDF] développement limité formule générale

[PDF] formule de taylor exercices corrigés

[PDF] formule de taylor maclaurin

[PDF] développement de taylor ? l'ordre 2

[PDF] développement limité formule de taylor pdf

[PDF] formule de taylor maclaurin pdf

[PDF] développement limité usuels en l'infini

[PDF] philosophie du développement pdf

[PDF] dissertation philosophie developpement

[PDF] philosophie du développement durable

[PDF] développement et réduction 3ème

[PDF] charge de projet rh

[PDF] chargé de développement rh salaire

[PDF] compétences ressources humaines

[PDF] responsable développement rh salaire