[PDF] Exercices de mathématiques - Exo7





Previous PDF Next PDF



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS

REPRÉSENTATIONS PARAMÉTRIQUES. ET ÉQUATIONS CARTÉSIENNES. Le cours en vidéo : https://youtu.be/naOM6YG6DJc. I. Représentation paramétrique d'une droite.



Exercices de mathématiques - Exo7

Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées Pour ? ? R on considère la droite D? d'équation cartésienne ...



Chapitre 1 : Équations de la droite dans le plan

c) Déterminer l'équation paramétrique de la droite perpendiculaire à d et passant par P(8 ; -9). § 1.3 Équations cartésiennes de la droite dans le plan.



1 Passer des équations paramétriques `a léqua- tion cartésienne d

1 Passer des équations paramétriques `a l'équa- tion cartésienne d'un plan. 1.1 Théor`eme. On suppose le plan P donné par les équations paramétriques :.



Méthodes de géométrie dans lespace Déterminer une équation

L'équation cartésienne d'un plan est du type ax + by + cz + d = 0 avec (a ;b Déterminer une représentation paramétrique de (AB) avec A(1 ;2 ;3) et B(0 ...



Chapitre 14 : Equations paramétriques et cartésiennes

Pour tout vecteur ?? il existe un unique triplet ( ; ; ) de réels tels que : Page 2. Chapitre 14 : Equations paramétriques et cartésiennes. Terminale S.



Géométrie affine en dimension 3

Représentations paramétriques d'une droite ou d'un plan . . . . . . . . . 5. II.2. Équations cartésiennes Équations cartésiennes d'une droite affine .



Aix-Marseille Université - Géométrie et arithmétique 1

9 oct. 2015 Donner une équation paramétrique de la médiatrice mAB du segment [AB]. ... L'équation cartesienne est de la forme ax + by + c = 0 ...



Aide mémoire danalyse de données

21 nov. 2007 3.4.4 Passage d'équation cartésienne `a paramétrique et réciproquement . . . . . . . . . . . . . . . . . 25. 3.4.5 Projections orthogonales ...



V Douine – Terminale – Spé maths – Chapitre 6 – Représentations

Vocabulaire : cette équation est appelée « équation cartésienne de P ». Spé maths – Chapitre 6 – Représentations paramétriques et équations cartésiennes.



Chapitre 14 : Equations paramétriques et cartésiennes

Chapitre 14 : Equations paramétriques et cartésiennes En mathématiques il a fallu attendre Al-Khwarizmi (780-850) afin de faire le lien entre la géométrie et les équations En effet il a découvert que si on regarde les solutions de certaines équations (souvent à deux inconnues) on peut observer la formation d’objet géométrique



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS CARTÉSIENNES

Une équation cartésienne de P est de la forme 3 ?3 + + =0 - Le point appartient à P donc ses coordonnées vérifient l'équation : 3×(?1)?3×2+1+ =0 donc =8 Une équation cartésienne de P est donc : 3 ?3 + +8=0 III Positions relatives d’une droite et d’un plan Méthode : Déterminer l'intersection d'une droite et d'un plan



FICHE DE RÉVISION DU BAC - Studyrama

Soit le plan contenant ayant pour vecteur normal Il a une équation cartésienne de la forme : appartient au plan donc ses coordonnées vérifient l’équation cartésienne D’où : est une équation

Comment calculer une équation cartésienne ?

Une équation cartésienne de P est de la forme 3 ?3 + + =0. - Le point appartient à P donc ses coordonnées vérifient l'équation : 3×(?1)?3×2+1+ =0 donc =8. Une équation cartésienne de P est donc : 3 ?3 + +8=0. III. Positions relatives d’une droite et d’un plan Méthode : Déterminer l'intersection d'une droite et d'un plan

Comment passer de l'équation cartésienne à une équation paramétrique ?

Pour passer d'une équation cartésienne à une équation paramétrique d'un plan, on exprime une variable en fonction des 2 autres qu'on appelle t et t ?. Pour passer d'une équation paramétrique à une équation cartésienne d'un plan, on fait disparaitre les t et les t ? de la paramétrisation par des combinaisons.

Quelle est l’équation cartésienne de la droite ?

–SÉRIE S est une équation cartésienne de la droite (AB). Equations cartésiennes d’un plan : On se place dans l’espace muni d’un repèreorthonormé . Soient a, b, c et d réels. Tous les points de coordonnées qui vérifient sont dans un même plan . est une équation cartésiennede ce plan. Propriété :

Qu'est-ce que les équations cartésiennes d'un plan dans l'espace ?

Les équations cartésiennes d'un plan dans l'espace sont des équations permettant de caractériser l'appartenance d'un point à un plan à partir de ses coordonnées dans le repère. Dans le repère left (O;overrightarrow {imath},overrightarrow {jmath},overrightarrow {k}right), on considère un plan mathcal {P}.

Exo7

Droites du plan ; droites et plans de l"espace

Fiche corrigée par Arnaud Bodin

1 Droites dans le plan

Exercice 1SoitPun plan muni d"un repèreR(O;~i;~j), les points et les vecteurs sont exprimés par leurs coordonnées dans

R. 1.

Donner un v ecteurdirecteur ,la pente une équation paramétrique et une équation cartésienne des droites

(AB)suivantes : (a)A(2;3)etB(1;4) (b)A(7;2)etB(2;5) (c)A(3;3)etB(3;6) 2.

Donner des équations paramétriques et cartésiennes des droites passant par Aet dirigées par~vavec :

(a)A(2;1)et~v(3;1) (b)A(0;1)et~v(1;2) (c)A(1;1)et~v(1;0) 3. Donner des équations paramétriques et cartésiennes des droites définies comme suit : (a) passant par le point (0;4)et de pente 3, (b) passant par le point (2;3)et parallèle à l"axe desx, (c) passant par le point (2;5)et parallèle à la droiteD: 8x+4y=3. On considère le triangleABCdont les côtés ont pour équations(AB):x+2y=3;(AC):x+y=2;(BC):

2x+3y=4.

1.

Donner les coordonnées des points A;B;C.

2. Donner les coordonnées des milieux A0;B0;C0des segments[BC],[AC]et[AB]respectivement. 3. Donner une équation de chaque médiane et vérifier qu"elles sont concourantes. Montrer qu"il existe un pointM0équidistant de toutes les droitesDl.

Exercice 4

Déterminer le projeté orthogonal du pointM0(x0;y0)sur la droite(D)d"équation 2x3y=5 ainsi que son

symétrique orthogonal. Exercice 51.T rouverune équation du plan (P)défini par les éléments suivants. (a)A,BetCsont des points de(P) i.A(0;0;1),B(1;0;0)etC(0;1;0). ii.A(1;1;1),B(2;0;1)etC(1;2;4). (b)Aest un point de(P),~uet~vsont des vecteurs directeurs de(P) i.A(1;2;1),~u(4;0;3)et~v(1;3;1). ii.A(1;0;2),~u(2;1;3)et~v(1;4;5). (c)Aest un point de(P),Dest une droite contenue dans(P) i.A(0;0;0)et(D):x+yz+3=0

4xy+2z=0

ii.A(1;1;0)et(D):8 :x=t y=1+2t z=13t (d)DetD0sont des droites contenues dans(P) i.(D):x+yz+3=0 xy2=0et(D0):3xyz+5=0 x+yz+1=0 ii.(D):x+2yz+1=0 x+3y+z4=0et(D0):2x+y3z+7=0

3x+2y+z1=0

2. Montrer que les représentations paramétriques sui vantesdéfinissent le même plan : 8< :x=2+s+2t y=2+2s+t z=1stet8 :x=1+3s0t0 y=3+3s0+t0 z=12s0 On considère la famille de plans(Pm)m2Rdéfinis par les équations cartésiennes : m

2x+(2m1)y+mz=3

1. Déterminer les plans Pmdans chacun des cas suivants : (a)A(1;1;1)2Pm (b)~n(2;52 ;1)est normal àPm. (c)~v(1;1;1)est un vecteur directeur dePm 2. Montrer qu"il e xisteun unique point Qappartenant à tous les plansPm. 2 1.

Déterminer la distance du point Aau plan(P)

(a)A(1;0;2)et(P): 2x+y+z+4=0. (b)A(3;2;1)et(P):x+5y4z=5. 2. Calculer la distance du point A(1;2;3)à la droite(D):2x+y3z=1 x+z=1 1. On considèrelepointA(2;4;1), lesvecteurs!u(1;1;1);!v(2;2;4),!w(3;1;1)etlerepère(A;!u;!v;!w).

On notex0;y0etz0les coordonnées dans ce repère. Donner les formules analytiques du changement de

repère exprimantx;y;zen fonction dex0;y0;z0. 2.

On considère la droite (D):yz=3

x+y=2. Utiliser le changement de repère pour donner une équation deDdans le repère(A;!u;!v;!w). 3. Donner les formules analytiques du changement de repère in verse. 1. Définir analytiquement la projection orthogonale sur le plan d"équation 2 x+2yz=1. 2. Définir analytiquement la projection orthogonale sur la droite d"équation x+y+z=1

2xz=2.

3. Donner l"e xpressionanalytique de la projection sur le plan (P)contenant le pointC(2;1;1)et ayant pour vecteurs directeurs~u(0;1;1)et~u0(2;0;1), selon la droite(AB), oùA(1;1;0)etB(0;1;3).

Indication pourl"exer cice2 NLes médianes sont les droites(AA0),(BB0),(CC0).Indication pourl"exer cice3 NLadistanced"unpointM0(x0;y0)àunedroiteDd"équationax+by+c=0estdonnéeparlaformuled(M0;D)=

jax0+by0+c0jpa

2+b2.4

Correction del"exer cice1 N1.(a) Un v ecteurdirecteur est !ABdont les coordonnées sont(xBxA;yByA) = (3;1). Pour n"importe quel vecteur directeur~v= (xv;yv)la pente est le réelp=yvx v. La pente est indépendante du choix du vecteurdirecteur. Ontrouveicip=13 . Uneéquationparamétriquedeladroitedevecteurdirecteur ~vpassant parA= (xA;yA)est donnée parx=xvt+xA y=yvt+yA:Donc ici pour le vecteur directeur!AB on trouve l"équation paramétrique x=3t+2 y=t+3 Il y a plusieurs façons d"obtenir une équation cartésienneax+by+c=0.

Première méthode.On sait queA= (xA;yA)appartient à la droite donc ses coordonnées vérifient

l"équationaxA+byA+c=0, idem avecB. On en déduit le système2a+3b+c=0 a+4b+c=0:Les

solutions s"obtiennent à une constante multiplicative près, on peut fixera=1 et on trouve alors

b=3 etc=11. L"équation est doncx+3y11=0. (b)

On trouv e~v=!AB= (5;3),p=35

etx=5t7 y=3t2 ainsi x+75 =t y+23 =tOn en déduitx+75 =y+23 ; d"où l"équation 3x+5y+31=0. (c) On trouve~v=!AB=(0;3), ladroiteestdoncverticale(sapenteestinfinie)uneéquationparamétrique estx=3 y=3t+6. Une équation cartésienne est simplement(x=3). 2. (a)

Equation paramétrique

x=3t+2 y=t+1 Troisième méthode.Pour une droite d"équation cartésienneax+by+c=0, on sait que~n= (a;b) est un vecteur normal à la droite et donc~v= (b;a)est un vecteur directeur (car alors~v~n=

0). Réciproquement si~v= (b;a)est un vecteur directeur alors une équation est de la forme

ax+by+c=0 pour une certaine constantecà déterminer. Ici on nous donne le vecteur directeur~v= (3;1)donc on cherche une équation sous la forme x+3y+c=0. Pour trouverc, on utilise queAappartient à la droite doncxA+3yA+c=0, ce qui conduit àc=1. Ainsi une équation de la droite estx+3y=1. (b)

On trouv e2 xy+1=0.

(c)

Droite horizontale d"équation (y=1).

3.

V oicijuste les résultats :

(a)y=3x+4, (b)y=3, (c)

8 x+4y=4 (les droites parallèles à 8x+4y=3 sont de la forme 8x+4y=c).Correction del"exer cice2 N1.Le point Aest l"intersection des droites(AB)et(AC). Les coordonnées(x;y)deAsont donc solutions du

système :x+2y=3 x+y=2donné par les équations des deux droites. La seule solution est(x;y) = (1;1). On a doncA= (1;1). On fait de même pour obtenir le pointB= (1;2)etC= (2;0). 2. Notons A0lemilieude[BC]alorslescoordonnéessetrouventparlaformulesuivanteA0=(xB+xC2 ;yB+yC2 12 ;1). De même on trouveB0= (32 ;12 )etC0= (0;32 5

3.(a) Les médianes ont pour équations : (AA0):(y=1);(BB0):(3x+5y=7);(CC0):(3x+4y=6).

(b)

Vérifions que les trois médianes sont concourantes (ce qui est vrai quelque soit le triangle). On

calcule d"abord l"intersectionI= (AA0)\(BB0), les coordonnées du pointId"intersection vérifient

donc le systèmey=1

3x+5y=7. On trouveI= (23

;1).

Il ne reste plus qu"à vérifier queIappartient à la droite(CC0)d"équation 3x+4y=6. En effet

3xI+4yI=6 doncI2(CC0).

Conclusion : les médianes sont concourantes au pointI= (23

;1).Correction del"exer cice3 NNous savons que la distance d"un pointM0(x0;y0)à une droiteDd"équationax+by+c=0 est donnée par la

formuled(M0;D) =jax0+by0+c0jpa 2+b2. Pour une droiteDlla formule donne :d(M0;Dl) =j(1l2)x0+2ly0(4l+2)jp(1l2)2+4l2.

Analyse.

On cherche un pointM0= (x0;y0)tel que pour toutl,d(M0;Dl) =koùk2Rest une constante.

L"égalitéd(M0;Dl)2=k2conduit à

(1l2)x0+2ly0(4l+2) 2=k2 (1l2)2+4l2

pour toutl2R. Nos inconnues sontx0;y0;k. On regarde l"égalité comme une égalité de deux polynômes en

la variablel.

Pour ne pas avoir à tout développer on raffine un peu : on identifie les termes de plus haut degré enl4:

x

20l4=k2l4doncx20=k2.

En évaluant l"égalité pourl=0 cela donne(x02)2=k2. On en déduit(x02)2=x20dont la seule solution

estx0=1. Ainsik=1 (cark>0). L"égalité pourl= +1 donne(2y06)2=4k2et pourl=1 donne(2y0+2)2=4k2. La seule solution est y 0=2.

Synthèse.Vérifions que le point de coordonnéesM0= (1;2)est situé à une distancek=1 de toutes les droites

D l.

Pour(x0;y0) = (1;2), on trouve :d(M0;Dl) =j(1l2)+4l(4l+2)jp(1l2)2+4l2=jl2+1jp(l2+1)2=jl2+1jjl2+1j=1. DoncM0= (1;2)

est bien équidistant de toutes les droitesDl.Correction del"exer cice4 N(D)est une droite de vecteur normal~n= (2;3). Le projeté orthogonalp(M0)deM0sur(D)est de la forme

M

0+l:~noùlest un réel à déterminer. Le pointM0+l:~na pour coordonnées(x0+2l;y03l).

M

0+l:~n2(D)()2(x0+2l)3(y03l) =5()l=2x0+3y0+513

p(M0)a pour coordonnéesx0+22x0+3y0+513 ;y032x0+3y0+513 ou encorep(M0) =9x0+6y0+1013 ;6x0+4y01513 autrement dits(M0) =M0+2l:~n(pour lelobtenu ci-dessus). Ses coordonnées sont doncs(M0) =x0+42x0+3y0+513 ;y062x0+3y0+513 ou encore5x0+12y0+2013 ;12x05y03013 .Correction del"exer cice5 N6

1.(a) Une équation d"un plan est ax+by+cz+d=0. Si un point appartient à un plan cela donne une

condition linéaire sura;b;c;d. Si l"on nous donne trois point cela donne un système linéaire de

trois équations à trois inconnues (car l"équation est unique à un facteur multplicatif non nul près).

On trouve :

i.x+y+z1=0 ii.

3 x+3y+z7=0

(b)~n=~u^~vest normal au plan. Si~n= (a;b;c)alors une équation du plan estax+by+cz+d=0. On trouve : i.9x+7y+12z17=0 ii.

17 x+13y7z3=0

(c) T rouverdeux points B;Cde la droiteD. Le vecteurs~u=!ABet~v=!ACsont des vecteurs directeurs deP. Procédé ensuite comme la question précédente. On obtient : i. P are xempleB= (0;6;3)etC= (1;0;2)appartiennent àD. On trouve l"équation 4x y+2z=0. ii. P are xempleB= (0;1;1)(poutt=0) etC= (1;1;2)(pourt=1) appartiennent àD. On trouve l"équation 2xy1=0. (d) T rouverun point AdeDet deux pointsB;Cde la droiteD0. Le vecteurs~u=!ABet~v=!ACsont des vecteurs directeurs deP. Puis procédé comme avant. 2. Les plans sont définis paramétriquement par (P):(2;2;1)+s(1;2;1)+t(2;1;1)donc deux des vecteurs directeurs sont~u= (1;2;1)et~v= (2;1;1). Un vecteur normal à(P)est alors~n=~u^~v= (1;1;3). Pourleplan(P0)définipar(1;3;1)+s0(3;3;2)+t0(1;1;0), ilapourvecteursdirecteurs~u0=(3;3;2) et~v0= (1;1;0). Un vecteur normal à(P0)est alors~n0=~u0^~v0= (2;2;6).

Les vecteurs normaux~net~n0sont colinéaires donc les plans(P)et(P0)sont parallèles (ou confondus).

Maintenant le pointA= (2;2;1)appartient à(P)(on a faits=0 ett=0). Il appartient aussi à(P0)(en prenants0=0 ett0=1).

Bilan.(P)et(P0)sont parallèles et ont un point commun : ils sont égaux !Correction del"exer cice6 N1.(a) Un point Aappartient à un plan d"équationax+by+cz+d=0 si et seulement siaxA+byA+

cz A+d=0. DoncA(1;1;1)2Pmsi et seulement sim2+(2m1)+m=3. Ce qui équivaut à m

2+3m4=0. Les deux solutions sontm=1 etm=4. DoncAappartient aux plansP1etP4

et pas aux autres. (b) Un plan d"équation ax+by+cz+d=0 a pour vecteur normal~n=(a;b;c). Donc si~n=(2;52 ;1) est un vecteur normal àPmune équation cartésienne est de la forme 2x52 yz+d=0. Or une équation dePmestm2x+(2m1)y+mz3=0. Ces deux équations sont égales à un facteur multiplicatif prèsl2R: 2x52 yz+d=lm2x+(2m1)y+mz3. On en déduit 2=lm2, 52
=l(2m1)et1=lm. En divisant la première égalité par la troisième on trouve :m=2.

D"oùl=12

. La seconde égalité est alors vérifiée.

Le seul plan ayant~npour vecteur normal estP2.

(c) Un v ecteurest direct eurdu plan Psi et seulement si le produit scalaire~v~n=0. Ici~n= (m2;2m

1;m). Donc~v= (1;1;1)est vecteur directeur si et seulement sim2+2m1+m=0. Ce qui

équivaut àm2+3m1=0. Les deux plans qui ont pour vecteur directeur~vsont les plans ayant le paramètrem=3p13 2 2.

Nous allons prendre 3 plans de la f amille(Pm), calculer leur point d"intersection et finalement montrer

que ce point appartient aux autres plans. 7 Prenons trois paramètre "au hasard"m=0,m=1,m=1. Un point qui appartient à ces trois plans doit vérifier les trois équations :8< :y=3 x+y+z=3quotesdbs_dbs15.pdfusesText_21
[PDF] bilan français 6ème

[PDF] le devoir de mémoire ? l'école

[PDF] spinoza religion citation

[PDF] religion spinoza

[PDF] kant morale

[PDF] spinoza dieu

[PDF] devoir 7eme de base math

[PDF] devoir 7eme de base

[PDF] devoir physique 7eme de base college pilote

[PDF] mission de l'aide sociale ? l'enfance

[PDF] cours sur la protection de lenfance

[PDF] aide sociale ? l'enfance définition

[PDF] l'aide sociale ? l'enfance c'est quoi

[PDF] classement prepa ecs

[PDF] programme technologie 5ème