[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices





Previous PDF Next PDF



Exercice 1 : Exercice 1 :

Chapitre 1 : Algèbre relationnelle III. Langage SQL. Exercice 1. Soit la base de données relationnelle des vols ...



Polycopié dexercices et examens résolus: Mécanique du point Polycopié dexercices et examens résolus: Mécanique du point

Caractériser le vecteur vitesse de la balle lors de son impact sur le sol. Corrigé : 1. La méthode est rigoureusement la même que pour l'exercice de 



Examen dalgèbre du 18 juin 2012 durée : 4h Questions de cours

En déduire les valeurs de J et K. Exercice 3 (9 pts) On cherche ici à calculer pour n ∈ N



Algèbre 3.pdf Algèbre 3.pdf

9 mars 2019 (Cours et exercices corrigés). Page 2. Algèbre III. BELLAOUAR Djamel ... 4.1 Examen final d'Algèbre III (2009)1 .



[PDF] Algèbre - Exo7 - Cours de mathématiques

3. À la découverte de l'algèbre. La première année d'études supérieures pose ... exercices corrigés. Au bout du chemin le plaisir de découvrir de nouveaux ...



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

Ces deux références proposent un cours complété d'exercices avec solutions la sec- §3 Exercices. Exercice 1.— Soit A une matrice de Mn(C). 1. Montrer que.



TD systèmes logiques.pdf

TD N 2 - Algèbre de Boole & Simplification. Algébrique des Fonctions Logiques. Exercice 1: 1) Quelle propriété des fonctions logiques de base nous a permis de 



ALGEBRE LINEAIRE Cours et exercices

22 mai 2014 Examen d'algèbre linéaire : 1 ère partie. 8 avril 2010. Exercice 1 : 1) Soit F1 l'ensemble défini par : ( ). {. }3y. /xRzyx



Règlement et plans détudes

Le cours à choix peut être choisi et suivi au semestre d'automne ou au semestre de printemps. Art. A 3 sexies – Examens de troisième année. 1. Les examens de 



fondmath1.pdf

THOMAS Algèbre



livre-algebre-1.pdf - Exo7 - Cours de mathématiques

vous et très riche qui recouvre la notion de matrice et d'espace vectoriel. les vidéos correspondant à ce cours



Exercice 1 :

3. Tables des matières. I. Chapitre 1 : Algèbre relationnelle . Correction de l'exercice 1. ... EXAMEN INITIATION AUX BASE DE DONNEES (2010) .



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

est vraie. 3. Exercices Corrigés. Exercice 1. Donner la négation des propositions suivantes : (1) ?x ? IR?y 



TD systèmes logiques.pdf

cours de séances des travaux dirigés. 1) Ecrire les nombres précédents de l'exercice 3 en base 2 . ... TD N 2 - Algèbre de Boole & Simplification.



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

3. Les déterminants. 1. 1. Définition récursive du déterminant . Ces deux références proposent un cours complété d'exercices avec solutions la sec-.



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercice 3 – On consid`ere les matrices `a coefficients réels : Exercice 10 – 1) Appliquer avec précision l'algorithme du cours pour inverser la matrice ...



Examen dalgèbre du 18 juin 2012 durée : 4h Questions de cours

Barême indicatif :question de cours3 points ; exercice 1



Algèbre 3.pdf

9 mar. 2019 Polycopié de cours. Par. Dr. BELLAOUAR Djamel. Deuxième Année Licence Mathématiques. 2018 /2019. Algèbre 3. (Cours et exercices corrigés) ...



Algèbre linéaire 3 : feuilles TD examens

Lorsque des résultats du cours seront utilisés ils devront être clairement énoncés. Exercice 1 : matrices orthogonales. 1/ Trouver une matrice orthogonale U ? 



Polycopié dexercices et examens résolus: Mécanique du point

Ces exercices couvrent les quatres chapitres du polycopié de cours de la mécanique du algèbre des quaternions est une extension du calcul des nombres.

Exercices Corriges

Matrices

Exercice 1{Considerons les matrices a coecients reels :

A= 2 1

2 1! ; B= 1 2 24!
C=0 B @1 1 2 1 0 1 11 01 C

A; D=0

B @11 1 1 0 1

0 1 01

C

A; E= 11 1

1 0 1!

Si elles ont un sens, calculer les matricesAB,BA,CD,DC,AE,CE.

Exercice 2{(extrait partiel novembre 2011)

On considere les matrices a coecients reels :

A= 1 1

1 1!

B= 431

2 1 1!

C= 1 2

12! Calculer, s'ils ont un sens, les produitsAB;BA;AC;CA;B2. Exercice 3{On considere les matrices a coecients reels :

A= 1 3

2 4!

B= 431

2 1 1!

C= 43 2 1!

1) Calculer s'ils ont un sens les produitsAB;BA;AC;CA;BC;CB;B2.

2) En deduire, sans plus de calcul, queAetCsont inversibles et preciser leurs inverses.

Exercice 4{SoitAla matrice deM2(R) etBla matrice deM2;3(R) denies par :

A= 4 3

1 1! ; B= 1 0 2 1 11! Si elles ont un sens, calculer les matricesAB,BA,A2,B2etA+ 2Id2.

Exercice 5{SoitA;B;Cles matrices :

A= 22 0

4 22!

2M2;3(R); B=0

B @1 1 1 2 131
C

A2M3;2(R); C= 11

1 2!

2M2;2(R)

Determiner les produits denis 2 a 2 de ces trois matrices. Exercice 6{Ti;j() etant la matrice elementaire qui correspond a ajouter a la ligneile produit parde la ligne j, preciser la matriceT2;1(12 ) deM2;2(R), puis la matriceT1;2(2)T2;1(12 1 Exercice 7{1) Preciser les matrices elementaires deM3;3(R) : D

2(2); T3;2(3); T2;1(2):

2) Calculer la matriceA=T3;2(3)D2(2)T2;1(2).

3) DonnerA1sous forme de produit de matrices elementaires. Puis, calculerA1.

Exercice 8{Appliquer avec precision aux matricesMetNsuivantes l'algorithme du cours qui determine si une matrice est inversible et donne dans ce cas son inverse : M= 23 11!

2M2;2(R)et N= 23

46!

2M2;2(R):

Exercice 9{(extrait partiel novembre 2011)

1) En utilisant l'algorithme du cours, montrer que la matrice suivante est inversible et preciser

son inverse :

A= 1 2

3 4!

2) Puis, donner une expression deA1et deAcomme produit de matrices elementaires.

Exercice 10{1) Appliquer avec precision l'algorithme du cours pour inverser la matrice : M= 11 23!

2M2;2(R):

2 ) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

Exercice 11{) Appliquer avec precision l'algorithme du cours pour inverser la matrice :

M= 2 1

3 2!

2M2;2(R):

Preciser une expression deM1, puis deMcomme produit de matrices elementaires. Exercice 12{SoitAetBdeux matrices carrees de m^eme ordre, on suppose que la matrice ABest inversible d'inverse la matriceC. Montrer alors queBest inversible et preciserA1.

Exercice 13{(extrait partiel novembre 2011)

SoitXetYdeux matrices carrees non nulles de m^eme taille a coecients reels, montrer que siXY= 0, les matricesXetYne sont pas inversibles.

Exercice 14{SoitM=0

B @2 4 1 2 5 1

1 2 11

C A.

1) Montrer en appliquant les algorithmes du cours queMest inversible. Preciser la matrice

M

1ainsi que la decomposition deM1comme produit de matrices elementaires.

2

2) En deduire une decomposition deMcomme produit de matrices elementaires.

3) Montrer que nous avons aussiM=T2;3(1)T1;3(1)T3;1(1)T2;1(1)T1;2(2).

4) En deduire une deuxieme expression deM1comme produit de matrices elementaires.

5) Calculer det(M) et retrouver la valeur deM1en utilisant la formule d'inversion donnee

dans le cours.

Exercice 15{(extrait partiel novembre 2009)

1) Appliquer avec precision l'algorithme du cours pour determiner l'inverseM1de la matrice :

M=0 B @1 2 3 0 1 2

0 4 61

C

A2M3;3(R):

Quelle est la valeur deM1?

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Deduire de la question 1 une matriceXdeM3;3(R)telle que :

2XM=0 B @1 0 0 0 1 0 02 11 C A: Exercice 16{1) Appliquer avec precision l'algorithme du cours pour determiner l'inverse M

1de la matrice :

M=0 B @1 2 3 0 1 1

0 2 31

C

A2M3;3(R):

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Verier le calcul en eectuant les calculs des matricesMM1etM1M.

Exercice 17{SoitMla matrice deM3(R) denie par :

M=0 B @1 01 2 3 4

0 1 11

C A:

1) Calculer le determinant deM, sa comatrice et l'inverse deM.

2) Determiner l'inverse deMsous forme de produit de matrices elementaires. EcrireMcomme

produit de matrices elementaires.

3) Resoudre a l'aide de l'inverse deMle systeme suivant oumest un reel xe :

(m)2 6 4x 1x3=m

2x1+ 3x2+ 4x3= 1

+x2+x3= 2m: 3

Correction de l'exercice 1 :

Le lecteur veriera que :

AB= 0 0

0 0! ; BA= 6 3 126!
CD=0 B @0 1 2 1 0 1 21 01
C

A; DC=0

B @123 2 0 2

1 0 11

C

A; AE= 12 3

12 3! Le produitCEn'a pas de sens car la taille des colonnes (a savoir 2) deEest dierent de la taille des lignes (a savoir 3) deC.

Correction de l'exercice 2 :

On trouve :

AB= 22 0

22 0!

AC= 0 0

2 0!

CA= 3 3

33!

Les deux autres produitsB2etBAn'ont pas de sens.

Correction de l'exercice 3 :

1)

AB= 2 0 2

02 2! BAn'a pas de sens car la taille des lignes deBn'est pas egale a celle des colonnes deA.

AC= 2 0

02! =2Id2:

CA= 2 0

02! =2Id2:

CB= 22157

10 7 3!

BCn'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deC. B

2n'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deB.

2) Nous avons :AC=CA=2Id2, nous en deduisons :

A(12

C) = (12

C)A= Id2:

Il en resulte que la matriceAest inversible, d'inverse : A 1=12

C= 232

112
4

De m^eme :

(12

A)C=C(12

A) = Id2:

Il en resulte que la matriceCest inversible, d'inverse : C 1=12 A= 12 32
12!

Correction de l'exercice 4 :

AB= 7 311

2 13!

La matriceBAn'a pas de sens.

A

2=AA= 139

32!

La matriceB2n'a pas de sens.

A+ 2Id2= 4 3

1 1! + 2 1 0 0 1! = 2 3 1 3!

Correction de l'exercice 5 :

AB= 02

4 14! ; BA=0 B @6 02 10 24

108 61

C

A; CA= 24 2

10 24!

BC=0 B @2 1 3 3 271
C

A; C2= 03

3 3!

Les matricesAC,CB,A2etB2ne sont pas denis.

Correction de l'exercice 6 :

T

2;1(12

) =T2;1(12 )I2=T2;1(12 ) 1 0 0 1! = 1 0 12 1! De m^eme, en utilisant les proprietes des actions a gauche par les matrices elementaires, on obtient : T

1;2(2)T2;1(12

) =T1;2(2) 1 0 12 1! = 02 12 1!

Correction de l'exercice 7 :

1.1) 5 D

2(2) =D2(2)I3=D2(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 02 0

0 0 11

C A: T

3;2(3) =T3;2(3)I3=T3;2(3)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 0 1 0

0 3 11

C A: T

2;1(2) =T2;1(2)I3=T2;1(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 2 1 0

0 0 11

C A: 1.2)

A=T3;2(3)D2(2)T2;1(2) =T3;2(3)D2(2)0

B @1 0 0 2 1 0

0 0 11

C A:

A=T3;2(3)0

B @1 0 0 42 0

0 0 11

C A: A=0 B @1 0 0 42 0

126 11

C A: 1.3) 6 A

1= (T3;2(3)D2(2)T2;1(2))1

=T2;1(2)1D2(2)1T3;2(3)1 =T2;1(2)D2((1=2))T3;2(3) =T2;1(2)D2((1=2))T3;2(3)0 B @1 0 0 0 1 0

0 0 11

C A =T2;1(2)D2((1=2))0 B @1 0 0 0 1 0 03 11 C A =T2;1(2)0 B @1 0 0

0(1=2) 0

03 11 C A 0 B @1 0 0

2(1=2) 0

03 11 C A:

Correction de l'exercice 8 :

a) Les deux lignes deMsont d'ordre 1. Donc,Mest ordonnee. M

1=T2;1(12

)M= 23 0 12 B

1=T2;1(12

)I2= 1 0 12 1! B 1M=M1 La matriceM1est triangulaire (on dit aussi echelonnee). La premiere phase de l'algorithme est terminee. Les elements de la diagonale deMetant non nuls, on peut conclure queMest inversible. M

2=D2(2)M1= 23

0 1! B

2=D2(2)B1= 1 0

1 2! B 2M=M2 M

3=D1(12

)M2= 132 0 1! B

3=D1(12

)B2= 12 0 1 2! B 3M=M3 M

4=T1;2(32

)M3= 1 0 0 1! =I2B4=T1;2(32 )B3= 1 3 1 2! B

4M=M4=I2

On obtient donc :

M

1=B4= 1 3

1 2!

Soit encore en remontant les calculs :

M

1=T1;2(32

)D1(12 )D2(2)T2;1(12 7 b) Les deux lignes deNsont d'ordre 1. Donc,Nest ordonnee. N

1=T2;1(2)N= 23

0 0! B

1=T2;1(2)I2= 1 0

2 1! B 1N=N1 La matriceN1est triangulaire (on dit aussi echelonnee). La premiere phase de l'algorithme est terminee. Une ligne deN1est constituee de 0. La matriceNn'est donc pas inversible.

Correction de l'exercice 9 :

1) On a :

T

2;1(3)A= 1 2

02! D

2(1=2)T2;1(3)A= 1 2

0 1! T

1;2(2)D2(1=2)T2;1(3)A= 1 2

0 1! =I2

Ainsi,Aest inversible et

A

1=T1;2(2)D2(1=2)T2;1(3) =T1;2(2)D2(1=2)T2;1(3) 1 0

0 1! Soit A

1=T1;2(2)D2(1=2) 1 0

3 1! A

1=T1;2(2) 1 0

3=21=2!

A

1= 2 1

3=21=2!

2) On a vu :

A

1=T1;2(2)D2(1=2)T2;1(3):

Il en resulte :

A= (A1)1= (T1;2(2)D2(1=2)T2;1(3) )1

Soit :

Correction de l'exercice 10 :

2.1) Les deux lignes deMsont d'ordre 1. Donc,Mest ordonnee.

quotesdbs_dbs45.pdfusesText_45
[PDF] algebre 3 exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] Algèbre : équation differentielles et nombrescomplexes Terminale Mathématiques

[PDF] algèbre bilinéaire exercices corrigés PDF Cours,Exercices ,Examens

[PDF] algèbre bilinéaire exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] algèbre des polynomes PDF Cours,Exercices ,Examens

[PDF] Algébre et fONCTION 2nde Mathématiques

[PDF] Algèbre et géometrie dans l'espace 2nde Mathématiques

[PDF] Algebre exercice de dm 4ème Mathématiques

[PDF] algebre exercice dm probleme 4ème Mathématiques

[PDF] algèbre exercices avec solutions PDF Cours,Exercices ,Examens

[PDF] algèbre exercices avec solutions pdf PDF Cours,Exercices ,Examens

[PDF] algebre exercices corrigés PDF Cours,Exercices ,Examens

[PDF] algebre exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] algebre exo7 PDF Cours,Exercices ,Examens

[PDF] algèbre financière MATH Terminale Mathématiques