[PDF] 1.7.4 Techniques de calcul des primitives et des intégrales.





Previous PDF Next PDF



Intégrales de fonctions de plusieurs variables

Pour calculer cette intégrale il suffit de trouver une primitive de plan`etes sur la sonde au cours de son trajet (ce calcul est — entre autre ...



Calcul de primitives

Calcul de primitives. Cours de É. Bouchet PCSI. 16 novembre 2021. Table des matières. 1 Primitive d'une fonction sur un intervalle.



Calculs de primitives Pascal Lainé 1

Déterminer une primitive sur ? de la fonction définie par : ( ) = Calculer les primitives suivantes sur l'intervalle : 1. =]1 +?[.



primitives exercices corriges

Exercice n°2 à 11 – Primitives sans fonction logarithme. Déterminer une primitive de f sur un intervalle contenu dans son ensemble de définition.



Chapitre 7 Calcul de primitive

Propriété : Soit f une fonction qui admet une primitive F sur un inter- valle I. Alors les primitives de f sont les fonctions de la forme F + k avec k constante 



1.7.4 Techniques de calcul des primitives et des intégrales.

Par le théor`eme fondamental du calcul intégral la recherche d'une primitive est équivalente au calcul d'une intégrale. Les mêmes techniques sont donc 



CALCULS DE PRIMITIVES

10 août 2020 CALCULS DE PRIMITIVES. I Produit d'une exponentielle et d'un polynôme. 2. II Fonctions rationnelles. 3. II.1 Exemple (très) particulier .



Le Calcul de Primitives —

25 oct. 2017 Pour calculer une primitive d'une fonction nous avons 3 outils principaux `a notre disposition : 1. Les primitives usuelles `a conna?tre par ...



2.2 Quelques propriétés des intégrales définies

2.3 Primitives: calcul d'intégrales définies. Souvent dans la pratique



Calcul des primitives

4 mai 2012 En pratique pour calculer une primitive d'une fonction donnée

CHAPITRE 1. FONCTIONS D'UNE VARIABLE R´EELLE.98

1.7.4 Techniques de calcul des primitives et des int

´egrales.

Par le th´eor`eme fondamental du calcul int´egral, la recherche d'une primitive est ´equivalente au calcul d'une int´egrale. Les mˆemes techniques sont donc utilis´ees pour ces deux op´erations. Nous les expliciterons ici pour le casdu calcul des int´egrales. Le

cas de la d´etermination d'une primitive s'en d´eduit aussitˆot en ne pr´ecisant pas les bornes

d'int´egration et en ajoutant une constante d'int´egrationarbitraire au r´esultat. Remarquons que, `a l'inverse de la d´erivation d'une fonction pour laquelle des applications r´ep´et´ees des r`egles applicables aux sommes, aux produits, aux quotients ou

`a la composition de fonctions permettent toujours d'obtenir la d´eriv´ee d´esir´ee, il n'est pas

toujours possible d'exprimer la primitiveou l'int´egraled'une fonction. Dans beaucoup de

probl`emes physiques r´eels, on doit ainsi recourir `a l'int´egration num´erique approch´ee.

Malgr´e ces limitations, il est possible d'int´egrer beaucoup de fonctions simples en utilisant des m´ethodes correspondant aux r`egles de d´erivation des fonctions. Int

´egration par inspection.

La m´ethode d'int´egration la plus simple est ´evidemment celle qui consiste `a reconnaˆıtre en l'int´egrand la d´eriv´ee d'une fonction connue. Dans ce cas, b af(x)dx=? b ad dxg(x)dx=g(b)-g(a) (1.207) o`ug?C1([a,b])sif?C0([a,b]). EXEMPLE1.79 D'apr`es les d´eriv´ees ´etablies pr´ec´edemment, ona, b axndx=xn+1 n+1? b a(n?=-1) b asinax dx=-cosax a? b a? b acosax dx=sinaxa? b a?b a1 ⎷a2-x2dx=arcsinxa? b a(-a´egration par parties.

Sifetg?C1([a,b]), alors

b af?(x)g(x)dx=f(x)g(x)?ba-? b af(x)g?(x)dx(1.208) CHAPITRE 1. FONCTIONS D'UNE VARIABLE R´EELLE.99 Cette formule provient de la r`egle de d´erivation d'un produit de deux fonctions : d dx(fg) =f?g+g?f Les fonctionsfetg´etant continˆument d´erivables, tous les termes de cette expression sont continus sur[a,b]et on peut en calculer l'int´egrale b ad dx(fg)dx=? b af?g+g?fdx soit f(x)g(x)?ba=? b af?(x)g(x)dx+? b ag?(x)f(x)dx

EXEMPLE1.80´Evaluons l'int´egrale

I=? p/2

0xsinxdx

Posantf?=sinxetg=x, il vient alorsf=-cosxetg?=1 et donc

I=-xcosx?

p/2 0 p/2

0(-cosx)dx=0+sinx?

p/2 0 =1

EXEMPLE1.81´Evaluons l'int´egrale

I n=? 1

0(1-x3)ndx

o`unest entier positif quelconque. Sin>0, on peut r´e´ecrire cette int´egrale sous la forme I n=? 1

0(1-x3)n-1(1-x3)dx=?

1

0(1-x3)n-1dx-?

1

0x3(1-x3)n-1dx

soit I n=In-1-? 1

0x?x2(1-x3)n-1?dx=In-1+?

1 0x

3nddx(1-x3)ndx

Par une int´egration par parties, on obtient

I n=In-1+x

3n(1-x3)n?10-?

1

013n(1-x3)ndx

=In-1+0-1 3nIn CHAPITRE 1. FONCTIONS D'UNE VARIABLE R´EELLE.100 Ceci fournit une relation entre les int´egrales successives I n=3n

3n+1In-1

D`es lors, il suffit d'´evaluer l'int´egrale pour une valeurparticuli`ere denafin de d´eterminer sa valeur

pournquelconque. Or I 0=? 1

0(1-x3)0dx=?

1 0dx=1

Finalement,

I n=3n

Par exemple,

I 1=3

4etI2=6734=914

Int

´egration par substitution.

La r`egle de d´erivation des fonctions compos´ees d dxF[g(x)] =F?[g(x)]g?(x)

fournit ´egalement une m´ethode pratique d'´evaluation des int´egrales. En effet, si on ´evalue

la primitive des deux membres de cette relation, on trouve

F[g(x)]+c=?

F ?[g(x)]g?(x)dx=? F ?[g]dg qui permet donc de calculer la primitive d'un int´egrand pouvant ˆetre ´ecrit sous la forme F ?[g(x)]g?(x).

EXEMPLE1.82

sinxcosnxdx=-? (cosx)nd(cosx) =-cosn+1x (n+1)+C(n?=-1) cosxsinnxdx=? (sinx)nd(sinx) =sinn+1x (n+1)+C(n?=-1)

En pratique, si on veut ´evaluer

?b af(x)dx on peut exprimerf(x)comme une fonction compos´eef(x) =f[g(t)]o`ux=g(t)d´efinit un changement de variable. CHAPITRE 1. FONCTIONS D'UNE VARIABLE R´EELLE.101 Sif?C0([a,b])et sig?C1([a,b])(ouC1([b,a])sibDe mˆeme f(x)dx=? f[g(t)]g?(t)dt? t=g-1(x)(1.210) Le membre de gauche de (1.210) est une fonction dex, alors que la primitivede droite est une fonction det. Pour ´ecrire une primitive def(x), il convient donc d'exprimer les deux membres de cette expression en fonction dexen utilisant le changement de variable inverset=g-1(x). Pour d´emontrer (1.210), il est par contre plus commode d'exprimer les deux membres en fonction det,? f(x)dx? x=g(t)=? f[g(t)]g?(t)dt(1.211) En d´erivant par rapport `atle premier membre de cette expression et en utilisant le th´eor`eme de d´erivation des fonctions compos´ees, il vient d dt? f(x)dx? x=g(t)? =f(g(t))g?(t) (1.212) qui est bien ´egal `a la d´eriv´ee du second membre de (1.211). Les deux membres de cette ´equation repr´esentent donc une primitive def. Le calcul de l'int´egrale d´efinie se d´eduit aussitˆot de (1.210).?

EXEMPLE1.83 D´eterminons la primitive

?sin⎷ x⎷xdx

Posantx=t2,dx=2tdt, la primitive devient

?sint t2tdt=2? sintdt=-2cost+c=-2cos⎷x+c

EXEMPLE1.84´Evaluons l'int´egrale

3 0x-1 ⎷x2-2x+3dx CHAPITRE 1. FONCTIONS D'UNE VARIABLE R´EELLE.102 Afin d'´eliminer la racine carr´ee, posonsx2-2x+3=tet donc 2(x-1)dx=dt. Il vient 3 0x-1 ⎷x2-2x+3dx=12? 6

3dt⎷t=⎷t?63=⎷6-⎷3

Int

´egration de la fonction inverse.

Dans le cas o`u une fonction r´eelley=f(x)est monotone et continue sur un intervalle [a,b], elle poss`ede une fonction inversex=f-1(y)monotone et continue sur l'ensemble des valeurs def. Les primitives de ces deux fonctions sont reli´ees par la relation f(x)dx=? xy-? f -1(y)dy? y=f(x)(1.213) Il suffit de repr´esenter ces deux fonctions graphiquement pour s'en convaincre (Fig.

1.32).

xy x=f-1(y),y=f(x) x

0f(t)dt?

y

0f-1(t)dt

FIGURE1.32

EXEMPLE1.85´Evaluons la primitive de la fonctionx=arcsiny. Par (1.213), il vient arcsinydy=xy-? sinxdx =xy+cosx+c =yarcsiny+?

1-y2+c

CHAPITRE 1. FONCTIONS D'UNE VARIABLE R´EELLE.103 Int

´egrale d'une fonction rationnelle.

Lorsque l'on doit ´evaluer l'int´egrale ou la primitive d'une fonction rationnelle, b aP(x)

Q(x)dx(1.214)

o`uP(x)etQ(x)sont des polynˆomes dexn'ayant aucun z´ero en commun (si tel est le cas on peut simplifier la fraction) et o`u le degr´e deP(x)est strictement inf´erieur `a celui deQ(x), alors, il est avantageux d'exprimer l'int´egrand sous la forme d'une somme de fractions simples.´Ecrivons le d´enominateur sous la forme Q(x) =a(x-a1)l1(x-a2)l2···(x2+2b1x+c1)r1(x2+2b2x+c2)r2···(1.215) o`u lesaisont les z´eros deQ(x), chacun de multiplicit´eli, et o`u les facteurs(x2+2bix+ci)

repr´esentent des trinˆomes irr´eductibles(b2i forme P(x)

Q(x)=l

1å j=1A

1j(x-a1)j+l

2å j=1A

2j(x-a2)j+···

r 1å j=1B

1j+C1jx

(x2+2b1x+c1)j+r 2å j=1B

2j+C2jx(x2+2b2x+c2)j+···(1.216)

dont chacun des termes est ais´ement int´egrable.

EXEMPLE1.86 Cherchons la primitive

?x2+1 x(x3+1)2dx On a x2+1 En d´eveloppant les deux membres et en identifiant les termescorrespondants des puissances dex, il vient ?x2+1 x(x3+1)2dx=? dx

En remarquant que

?5x-3 x2-x+1dx=52? (2x-1)x2-x+1dx-12? dx(x-1/2)2+3/4 5

2ln(x2-x+1)-1⎷3arctg2x-1⎷3+C

CHAPITRE 1. FONCTIONS D'UNE VARIABLE R´EELLE.104 et ?x-1 (x2-x+1)2dx=?x-1/2(x2-x+1)2dx-12? dx[(x-1/2)2+3/4]2 =-1

21x2-x+1-4⎷

3 9? ?dt(t2+1)2? t=2x-1⎷3 =-1

21x2-x+1-4⎷

3 912?
arctgt+t1+t2? t=2x-1⎷3+C? =-1

21x2-x+1-2⎷

3 9? arctg2x-1⎷3+⎷ 3

42x-1x2-x+1?

+C? il vient finalement, ?x2+1 Primitivation des fonctions rationnelles encosx,sinxouchx,shx. Si la primitivation n'est pas imm´ediate, on peut ramener les primitives et int´egrales de fonctions rationnelles en sinxet cosx`a des primitives et int´egrales de fonctions rationnelles en effectuant la substitutiont=tgx

2en tenant compte des relations

sinx=2t

1+t2,cosx=1-t21+t2,dx=21+t2dt

De mˆeme, si l'int´egrand est une fonction rationnelle de shxet chx, la substitution t=thx

2transforme l'int´egrand en une fonction rationnelle detsi on remarque que

shx=2t

1-t2,chx=1+t21-t2,dx=21-t2dt

EXEMPLE1.87 Calculons?dx

1+3cosx.

Posantt=tgx

2, il vient

?dx

1+3cosx=-?dtt2-2.

CHAPITRE 1. FONCTIONS D'UNE VARIABLE R´EELLE.105

On calcule ensuite

?dt t2-2=1⎷2? (t-⎷ 2)-t t2-2dt 1 ⎷2? dtt+⎷2-1⎷2? t dtt2-2 1 ⎷2ln|t+⎷2|-12⎷2ln|t2-2| 1

2⎷2ln?????t+⎷

2 t-⎷2?????

Finalement, on obtient donc

dx

1+3cosx=12⎷2ln??????tg

x

2+⎷2

tgx2-⎷2?????? +C Si l'int´egrand est une fonction impaire en sinx(resp. en cosx), on posera cosx=t (resp. sinx=t). De mˆeme, si l'int´egrand est une fonction impaire en shx(resp. en chx), on posera chx=t(resp. shx=t).

EXEMPLE1.88 Calculons?

sin 3x dx

Posant cosx=t, il vient-sinx dx=dtet

sin

3x dx=?

sinx(1-cos2x)dx=-? (1-t2)dt=-t+1 3t3

On a donc

sin

3x dx=-cosx+1

3cos3x+C

Enfin, si on doit calculer

R(cosx,sinx)dxo`uR(cosx,sinx) =R(-cosx,-sinx)

on posera tgx=t. De mˆeme, pour ´evaluer

R(chx,shx)dxo`uR(chx,shx) =R(-chx,-shx)

on posera thx=t. CHAPITRE 1. FONCTIONS D'UNE VARIABLE R´EELLE.106

EXEMPLE1.89 Calculons?dx

th2x

En posant thx=t, il vientdx=dt

1-t2et

dx =-1 t+arctht+C =-cothx+x+C

Primitivation des fonctions irrationnelles trin

ˆomes.

Consid´erons la primitive d'une fonction irrationnelle dela forme R(x,? ax2+bx+c) (1.217) L'expressionax2+bx+cdoit ˆetre positive sur l'intervalle o`u on recherche la primitive. On ne consid´erera pas ici le cas o`u ce trinˆome poss`ede une racine double (dans ce cas le radical disparaˆıt). Il reste donc `a envisager lescas suivants :

1) Sia>0,b2-4ac>0 ou sia>0,b2-4ac<0, alors on effectuela substitution

ax2+bx+c=-⎷a x+t(1.218)

En ´elevant au carr´e, il vient

bx+c=-2x⎷ a t+t2(1.219) d'o`u x=t2-c

2⎷a t+b,dx=2(t-⎷

a x)

2⎷a t+bdt

et la primitive revient `a celle d'une fraction rationnelle.

2) Sia<0,b2-4ac>0. Alorsax2+bx+cposs`ede deux z´eros r´eelsp,q(p (x?]p,q[).

On peut donc ´ecrire

ax2+bx+c= (x-p)?a(x-q) x-p(1.220) qui revient `a une fraction rationnelle si on pose a(x-q) x-p=t(1.221) CHAPITRE 1. FONCTIONS D'UNE VARIABLE R´EELLE.107

Sic>0, on peut aussi poser

ax2+bx+c=xt+⎷c(1.222)

Il vient comme pr´ec´edemment

x=-2⎷ ct-b t2-a,dx=-2(xt+⎷ c) t2-adt(1.223)

EXEMPLE1.90 Calculons?dx

⎷x2+4

On poset=x+⎷

x2+4, d'o`u x=t2-4

2t,dx=t2+42t2dt

et ?dx ⎷x2+4=?dtt=ln|x+?x2+4|+C Dans le cas particulier des fractions rationnelles en xet?

1-x2ouxet?x2-1 ouxet?1+x2(1.224)

on posera simplement, respectivement, x=cosuoux=sinu x=chu x=shu(1.225) pour se ramener `a la primitive d'une fonction rationnelle en, respectivement, cosuet sinuchuet shuchuet shu(1.226) Remarquons encore que la primitivation d'une fonction irrationnelle R(x,? ax2+bx+c) (1.227)quotesdbs_dbs50.pdfusesText_50

[PDF] calcul de probabilité exercices corrigés

[PDF] calcul de proportion en ligne

[PDF] calcul de structure en béton armé pdf

[PDF] calcul de volumes exercices

[PDF] calcul des ponts en béton armé

[PDF] calcul des structures en béton armé

[PDF] calcul des structures en béton armé pdf

[PDF] calcul distance entre 2 genes

[PDF] calcul distance latitude longitude excel

[PDF] calcul droit de consommation tunisie

[PDF] calcul du cycle menstruel de la femme pdf

[PDF] calcul du fond de roulement ? partir du bilan

[PDF] calcul du ph ? léquivalence

[PDF] calcul du salaire de comparaison pension dinvalidité

[PDF] calcul du temps de travail ? 70