[PDF] CS231A Course Notes 1: Camera Models





Previous PDF Next PDF



TECHNIQUES DE PRISES DE VUES TECHNIQUES DE PRISES DE VUES

Exemple : Une voiture de course vient de l'horizon vers la caméra : - Avec une courte focale la voiture semble bondir vers l'objectif. - Avec une longue 



Petit cours de photographie numérique Petit cours de photographie numérique

Caméra plenoptique. Conclusion. XXI`eme si`ecle (1). 10-20 megapixels. Camera : quelques dollars. Mais traitement d'images (logiciel). 18/126. Petit cours de.



Cours de vision industrielle Contrôle qualité par caméra linéaire

Autrement dit elle utilise des caméras comme capteurs pour détecter des défauts sur des objets manufacturés



TRI-Genotoul TRI-Genotoul

2 avr. 2015 Le capteur peut être muni d'un filtre pour éliminer les infra-rouges. 5. Les caméras couleur. Les capteurs CCD produisent des images monochromes ...



Principes de bases des capteurs dimages

Ce cours est organisé en une partie «cours» et une étude de cas. Quelques Dans le cas de caméras refroidies embarquées dans des sondes spatiales la caméra ...



COURS DE THERMOGRAPHIE INFRAROUGE

Une caméra de thermographie peut voir les changements imperceptibles à l'œil ! Transferts thermiques - Rayonnement. Page 16. IUT de PERPIGNAN. Département Génie 



Manuel dinstallation et dutilisation - Caméra de surveillance IP

Au cours de l'installation le logiciel testera les réglages du pare-feu de For your own safety



CS231A Course Notes 1: Camera Models

Therefore one question we must ask in introductory computer vision is: how do we model a camera? 2 Pinhole cameras barrier object aperture film. Figure 1: A 



Color Video Camera

La caméra est équipée d'un voyant de signalisation Tally qui se voit rapidement lorsque la caméra est en cours d'utilisation. Le voyant de signalisation 



Les bases du cadrage

Dans un mouvement en caméra portée appelé aussi caméra à l'épaule



CS231A Course Notes 1: Camera Models

Therefore one question we must ask in introductory computer vision is: how do we model a camera? 2 Pinhole cameras barrier object aperture film. Figure 1: A 



Mouvement de camera 3D

JP/PFR/PDF/PFR2012_07-2406036. PDF] SITES VISITÉS EN NOVEMBRE 2011. ... cours de cette dernière



Cours Multicaméra

Une captation télévisuelle est appelée captation en multicaméra car il y a plus d'une caméra reliée à une régie qui enregistre et/ou diffuse le programme. Le 



COURS DE THERMOGRAPHIE INFRAROUGE

Une caméra de thermographie peut voir les changements imperceptibles à l'œil ! Transferts thermiques - Rayonnement. Page 16. IUT de PERPIGNAN. Département Génie 



TECHNIQUES DE PRISES DE VUES

Exemple : Une voiture de course vient de l'horizon vers la caméra : - Avec une courte focale la voiture semble bondir vers l'objectif. - Avec une longue focale 



Caméras IP installation

https://www.orsys.fr/pdf-auto/pdfCours/CME.pdf



Calibrage géométrique dune caméra ou dun capteur de vision

14. Figure 7 : Modèle de caméra avec distorsion non paramétrique. Figure 6 : Une image distordue (à gauche) et l'image corrigée (à droite). Page 15. Cours. L' 



prise en main de camera « camera jvc pro hd gy hm 150

PLAN DE COURS. 22/09/2015 CAMERA JVC PRO HD GY HM 150 ... Caméra. • Batteries plus chargeur. • Câbles et connectiques. • Micros.



Coelioscopie et coeliochirurgie : principes généraux et instrumentation

Support de Cours (Version PDF) - en tenant la caméra dans sa main gauche et en travaillant avec un instrument tenu dans sa main droite.



Polycom® RealPresence Touch™ avec Microsoft Skype Entreprise

Sélectionner et régler une caméra. 1 En cours de réunion effleurez. > Contrôle des caméras. 2 Depuis Sélectionner la caméra



[PDF] TECHNIQUES DE PRISES DE VUES

Exemple : Une voiture de course vient de l'horizon vers la caméra : - Avec une courte focale la voiture semble bondir vers l'objectif - Avec une longue focale 



[PDF] La Caméra

La camera II Sommaire 1 Le Capteur CCD 2 2 1 La mise au point format de l'image et d'affiner la linéarité de la focalisation en fonction du 



[PDF] LES CAMERAS TRI-Genotoul

2 avr 2015 · 1 Le capteur de photons Tout d'abord comment peut-on détecter un signal lumineux avec le silicium? Les atomes de silicium



[PDF] LA CAMERA ET LE CADRE

COURS DE JJ TARDY - Lycée Auguste et Louis LUMIÈRE - Lyon 2005 caméras avaient toutes le même format presque carré: le 133/1 (la copie positive étant 



[PDF] Je découvre un extrait du livre - Dunod

René Bouillot Cours de photographie numérique – Principes acquisition stockage 3e édition 2009 Gérard Galès Le Guide pratique du vidéaste (+ DVD) 



[PDF] Les bases du cadrage

d'une caméra ou d'un appareil photo) reposent sur la composition du cadre 1 Règle des trois tiers La règle la plus importante et à avoir toujours en 



[PDF] Composition mise en scène et mouvements de caméra

Des instructions au format PDF y sont disponibles : www merlincook- book com/MerlinBetaBalInstr1-27 pdf Le site propose aussi une « formule magique » pour 



[PDF] Comment bien placer sa caméra ? UbiCast

enregistrer puis diffuser vos cours conférences webinars sous format vidéo 1 L'AXE DE LA CAMÉRA Nous allons commencer par déterminer l'axe de la 



[PDF] prise en main de camera « camera jvc pro hd gy hm 150 - Sciences Po

PLAN DE COURS 22/09/2015 1 PRISE EN MAIN DE CAMERA « CAMERA JVC PRO HD GY Sélection du format vidéo (MP4 Quicktime) résolution fréquence d'images



[PDF] Mouvement de camera 3D - Constellation

2 1 1 CAMÉRA VIRTUELLE CHEZ ILM JP/PFR/PDF/PFR2012_07-2406036 PDF] cours de cette dernière nous pouvons accentuer un mouvement de caméra après un 

  • Quelles sont les différentes parties d'une caméra ?

    Les 3 parties de la caméra - Optique, corps, enregistreur.
  • Quelles sont les techniques de prise de vue ?

    Les techniques de prise de vue.Photos, par photographe au sol.Vidéos, par vidéaste au sol.Prises de vues sous-marines.Production audiovisuelle.Timelapses, Dronelapses ou Hyp.Autres prises de vues.
  • Qu'est-ce que le cadrage en vidéo ?

    Le cadrage dans sa définition simple est ce que le cameraman fait apparaître face à l'objectif de sa caméra, décidant ainsi des éléments qui vont être dans le champ de l'image. Tout ce qui n'est pas retenu au cadrage est donc par opposition appelé hors champ.
  • Privilégiez plutôt de les placer sur les points ou zones de forces lorsque vous tournez. Vous pouvez faire des exceptions à cette règle si vous souhaitez donner un effet différent ou encore une certaine symétrie à votre vidéo en pla?nt votre sujet au centre du cadre par exemple.

CS231A Course Notes 1: Camera Models

Kenji Hata and Silvio Savarese

1 Introduction

The camera is one of the most essential tools in computer vision. It is the mechanism by which we can record the world around us and use its output - photographs - for various applications. Therefore, one question we must ask in introductory computer vision is: how do we model a camera?

2 Pinhole cameras

barrier object aperture film Figure 1: A simple working camera model: the pinhole camera model. Let's design a simple camera system { a system that can record an image of an object or scene in the 3D world. This camera system can be designed by placing a barrier with a small aperture between the 3D object and a photographic lm or sensor. As Figure 1 shows, each point on the 3D object emits multiple rays of light outwards. Without a barrier in place, every point on the lm will be in uenced by light rays emitted from every point on the

3D object. Due to the barrier, only one (or a few) of these rays of light passes

through the aperture and hits the lm. Therefore, we can establish a one- to-one mapping between points on the 3D object and the lm. The result is that the lm gets exposed by an \image" of the 3D object by means of this mapping. This simple model is known as thepinhole camera model. 1 o" |OE ®"Figure 2: A formal construction of the pinhole camera model. A more formal construction of the pinhole camera is shown in Figure 2. In this construction, the lm is commonly called theimage or retinal plane. The aperture is referred to as thepinholeOorcenter of the camera. The distance between the image plane and the pinholeOis thefocal lengthf. Sometimes, the retinal plane is placed betweenOand the 3D object at a distanceffromO. In this case, it is called thevirtual imageorvirtual retinal plane. Note that the projection of the object in the image plane and the image of the object in the virtual image plane are identical up to a scale (similarity) transformation. Now, how do we use pinhole cameras? LetP=x y zTbe a point on some 3D object visible to the pinhole camera.Pwill be mapped orpro- jectedonto the image plane 0, resulting in point1P0=x0y0T. Similarly, the pinhole itself can be projected onto the image plane, giving a new point C 0. Here, we can dene a coordinate systemi j kcentered at the pinhole Osuch that the axiskis perpendicular to the image plane and points toward it. This coordinate system is often known as thecamera reference system orcamera coordinate system. The line dened byC0andOis called the optical axisof the camera system. Recall that pointP0is derived from the projection of 3D pointPon the image plane

0. Therefore, if we derive the relationship between 3D point

Pand image plane pointP0, we can understand how the 3D world imprints itself upon the image taken by a pinhole camera. Notice that triangleP0C0O is similar to the triangle formed byP,Oand (0;0;z). Therefore, using the law of similar triangles we nd that:1 Throughout the course notes, let the prime superscript (e.g.P0) indicate that this point is a projected or complementary point to the non-superscript version. For example, P

0is the projected version ofP.

2 P

0=x0y0T=fxz

fyz T(1) Notice that one large assumption we make in this pinhole model is that the aperture is a single point. In most real world scenarios, however, we cannot assume the aperture can be innitely small. Thus, what is the eect of varying aperture size? Figure 3: The eects of aperture size on the image. As the aperture size decreases, the image gets sharper, but darker. As the aperture size increases, the number of light rays that passes through the barrier consequently increases. With more light rays passing through, then each point on the lm may be aected by light rays from multiple points in 3D space, blurring the image. Although we may be in- clined to try to make the aperture as small as possible, recall that a smaller aperture size causes less light rays to pass through, resulting in crisper but darker images. Therefore, we arrive at the fundamental problem presented by the pinhole formulation: can we develop cameras that take crisp and bright images?

3 Cameras and lenses

In modern cameras, the above con

ict between crispness and brightness is mitigated by usinglenses, devices that can focus or disperse light. If we replace the pinhole with a lens that is both properly placed and sized, then it satises the following property: all rays of light that are emitted by some pointPare refracted by the lens such that they converge to a single pointP0 3 lens object film Figure 4: A setup of a simple lens model. Notice how the rays of the top point on the tree converge nicely on the lm. However, a point at a dierent distance away from the lens results in rays not converging perfectly on the lm. in the image plane. Therefore, the problem of the majority of the light rays blocked due to a small aperture is removed (Figure 4). However, please note that this property does not hold for all 3D points, but only for some specic pointP. Take another pointQwhich is closer or further from the image plane thanP. The corresponding projection into the image will be blurred or out of focus. Thus, lenses have a specic distance for which objects are \in focus". This property is also related to a photography and computer graphics concept known as depth of eld, which is the eective range at which cameras can take clear photos. lens film object z' zo -z f P focal point Figure 5: Lenses focus light rays parallel to the optical axis into the fo- cal point. Furthermore, this setup illustrates the paraxial refraction model, which helps us nd the relationship between points in the image plane and the 3D world in cameras with lenses. Camera lenses have another interesting property: they focus all light rays traveling parallel to the optical axis to one point known as thefocal point (Figure 5). The distance between the focal point and the center of the lens is commonly referred to as thefocal lengthf. Furthermore, light rays 4 passing through the center of the lens are not deviated. We thus can arrive at a similar construction to the pinhole model that relates a pointPin 3D space with its corresponding pointP0in the image plane. P 0=x0 y 0 =z0xz z0yz (2) The derivation for this model is outside the scope of the class. However, please notice that in the pinhole modelz0=f, while in this lens-based model, z

0=f+z0. Additionally, since this derivation takes advantage of the paraxial

or \thin lens" assumption

2, it is called theparaxial refraction model.

normal pincushion barrel Figure 6: Demonstrating how pincushion and barrel distortions aect images. Because the paraxial refraction model approximates using the thin lens assumption, a number of aberrations can occur. The most common one is referred to asradial distortion, which causes the image magnication to decrease or increase as a function of the distance to the optical axis. We classify the radial distortion aspincushion distortionwhen the magni- cation increases andbarrel distortion3when the magnication decreases. Radial distortion is caused by the fact that dierent portions of the lens have diering focal lengths.

4 Going to digital image space

In this section, we will discuss the details of the parameters we must account for when modeling the projection from 3D space to the digital images we know. All the results derived will use the pinhole model, but they also hold for the paraxial refraction model.2 For the anglethat incoming light rays make with the optical axis of the lens, the paraxial assumption substitutesfor any place sin() is used. This approximation of for sinholds asapproaches 0.

3Barrel distortion typically occurs when one uses sh-eye lenses.

5 As discussed earlier, a pointPin 3D space can be mapped (or projected) into a 2D pointP0in the image plane 0. ThisR3!R2mapping is referred to as aprojective transformation. This projection of 3D points into the image plane does not directly correspond to what we see in actual digital images for several reasons. First, points in the digital images are, in general, in a dierent reference system than those in the image plane. Second, digital images are divided into discrete pixels, whereas points in the image plane are continuous. Finally, the physical sensors can introduce non-linearity such as distortion to the mapping. To account for these dierences, we will introduce a number of additional transformations that allow us to map any point from the 3D world to pixel coordinates.

4.1 The Camera Matrix Model and Homogeneous Co-

ordinates

4.1.1 Introduction to the Camera Matrix Model

The camera matrix model describes a set of important parameters that aect how a world pointPis mapped to image coordinatesP0. As the name suggests, these parameters will be represented in matrix form. First, let's introduce some of those parameters. The rst parameters,cxandcy, describe how image plane and digital image coordinates can dier by a translation. Image plane coordinates have their originC0at the image center where thekaxis intersects the image plane. On the other hand, digital image coordinates typically have their ori- gin at the lower-left corner of the image. Thus, 2D points in the image plane and 2D points in the image are oset by a translation vectorcx;cy T. To accommodate this change of coordinate systems, the mapping now becomes: P 0=x0 y 0 =fxz +cx fyz +cy (3) The second eect we must account for that the points in digital images are expressed in pixels, while points in image plane are represented in physical measurements (e.g. centimeters). In order to accommodate this change of units, we must introduce two new parameterskandl. These parameters, whose units would be something like pixelscm , correspond to the change of units in the two axes of the image plane. Note thatkandlmay be dierent because the aspect ratio of a pixel is not guaranteed to be one. Ifk=l, we often say that the camera hassquare pixels. We adjust our previous mapping to be 6 P 0=x0 y 0 =fkxz +cx flyz +cy =xz +cx yz +cy (4) Is there a better way to represent this projection fromP!P0? If this projection is a linear transformation, then it can be represented as a product of a matrix and the input vector (in this case, it would beP. However, from Equation 4, we see that this projectionP!P0is not linear, as the opera- tion divides one of the input parameters (namelyz). Still, representing this projection as a matrix-vector product would be useful for future derivations. Therefore, can we represent our transformation as a matrix-vector product despite its nonlinearity? Homogeneous coordinates are the solution.

4.1.2 Homogeneous Coordinates

One way to solve this problem is to change the coordinate systems. For example, we introduce a new coordinate, such that any pointP0= (x0;y0) becomes (x0;y0;1). Similarly, any pointP= (x;y;z) becomes (x;y;z;1). This augmented space is referred to as thehomogeneous coordinate sys- tem. As demonstrated previously, to convert a Euclidean vector (v1;:::;vn) to homogeneous coordinates, we simply append a 1 in a new dimension to get (v1;:::;vn;1). Note that the equality between a vector and its homogeneous coordinates only occurs when the nal coordinate equals one. Therefore, when converting back from arbitrary homogeneous coordinates (v1;:::;vn;w), we get Euclidean coordinates ( v1w ;:::;vnw ). Using homogeneous coordinates, we can formulate P 0h=2

4x+cxz

y+cyz z3 5 =2 40cx0
0 cy0

0 0 1 03

52
6 64x
y z 13 7 75=2
40cx0
0 cy0

0 0 1 03

5 Ph(5) From this point on, assume that we will work in homogeneous coordinates, unless stated otherwise. We will drop thehindex, so any pointPorP0can be assumed to be in homogeneous coordinates. As seen from Equation 5, we can represent the relationship between a point in 3D space and its image coordinates by a matrix vector relationship: P 0=2 4x0 y 0 z3 5 =2 40cx0
0 cy0

0 0 1 03

52
6 64x
y z 13 7 75=2
40cx0
0 cy0

0 0 1 03

5

P=MP(6)

7 We can decompose this transformation a bit further into P

0=MP=2

40cx
0 cy

0 0 13

5

I0P=KI0P(7)

The matrixKis often referred to as thecamera matrix.

4.1.3 The Complete Camera Matrix Model

The camera matrixKcontains some of the critical parameters that describes a camera's characteristics and its model, including thecx;cy;k;andlparam- eters as discussed above. Two parameters are currently missing this formula- tion:skewnessanddistortion. We often say that an image is skewed when the camera coordinate system is skewed, meaning that the angle between the two axes is slightly larger or smaller than 90 degrees. Most cameras have zero-skew, but some degree of skewness may occur because of sensor manu- facturing errors. Deriving the new camera matrix accounting for skewness is outside the scope of this class and we give it to you below: K=2 4x0 y 0 z3 5 =2

4cot cx

0 sincy

0 0 13

5 (8) Most methods that we introduce in this class ignore distortion eects, there- fore our class camera matrixKhas 5 degrees of freedom: 2 for focal length, 2 for oset, and 1 for skewness. These parameters are collectively known as the intrinsic parameters, as they are unique and inherent to a given camera and relate to essential properties of the camera, such as its manufacturing.

4.2 Extrinsic Parameters

So far, we have described a mapping between a pointPin the 3D camera reference system to a pointP0in the 2D image plane using the intrinsic parameters of a camera described in matrix form. But what if the information about the 3D world is available in a dierent coordinate system? Then, we need to include an additional transformation that relates points from the world reference system to the camera reference system. This transformation is captured by a rotation matrixRand translation vectorT. Therefore, given a point in a world reference systemPw, we can compute its camera coordinates as follows: P=R T 0 1 P w(9) 8 Substituting this in equation (7) and simplifying gives P

0=KR TPw=MPw(10)

These parametersRandTare known as theextrinsic parameters because they are external to and do not depend on the camera. This completes the mapping from a 3D pointPin an arbitrary world reference system to the image plane. To reiterate, we see that the full pro- jection matrixMconsists of the two types of parameters introduced above: intrinsicandextrinsicparameters. All parameters contained in the camera matrixKare the intrinsic parameters, which change as the type of camera changes. The extrinsic paramters include the rotation and translation, which do not depend on the camera's build. Overall, we nd that the 34 projec- tion matrixMhas 11 degrees of freedom: 5 from the intrinsic camera matrix,

3 from extrinsic rotation, and 3 from extrinsic translation.

5 Camera Calibration

To precisely know the transformation from the real, 3D world into digital images requires prior knowledge of many of the camera's intrinsic parame- ters. If given an arbitrary camera, we may or may not have access to these parameters. We do, however, have access to the images the camera takes. Therefore, can we nd a way to deduce them from images? This problem of estimating the extrinsic and intrinsic camera parameters is known ascamera calibration. Figure 7: The setup of an example calibration rig. Specically, we do this by solving for the intrinsic camera matrixKand the extrinsic parametersR;Tfrom Equation 10. We can describe this prob- lem in the context of a calibration rig, such as the one show in Figure 7. The 9 rig usually consists of a simple pattern (i.e. checkerboard) with known di- mensions. Furthermore, the rig denes our world reference frame with origin O wand axesiw;jw;kw. From the rig's known pattern, we have known points in the world reference frameP1;:::;Pn. Finding these points in the image we take from the camera gives corresponding points in the imagep1;:::;pn. We set up a linear system of equations fromncorrespondences such that for each correspondencePi;piand camera matrixMwhose rows are m

1;m2;m3:

p i=ui v i =MPi= m1Pim

3Pim2Pim

3Pi (11) As we see from the above equation, each correspondence gives us two equations and, consequently, two constraints for solving the unknown pa- rameters contained inm. From before, we know that the camera matrix has 11 unknown parameters. This means that we need at least 6 correspon- dences to solve this. However, in the real world, we often use more, as our measurements are often noisy. To explicitly see this, we can derive a pair of equations that relateuiandviwithPi. u i(m3Pi)m1Pi= 0 v i(m3Pi)m2Pi= 0 Givennof these corresponding points, the entire linear system of equa- tions becomes u

1(m3P1)m1P1= 0

v

1(m3P1)m2P1= 0

u n(m3Pn)m1Pn= 0 v n(m3Pn)m2Pn= 0 This can be formatted as a matrix-vector product shown below: 2 6

66664P

T10Tu1PT10TPT1v1PT1...

P

Tn0TunPTn0TPTnvnPTn3

7

777752

4mT1mT2mT33

5 =Pm= 0 (12) When 2n >11, our homogeneous linear system is overdetermined. For such a systemm= 0 is always a trivial solution. Furthemore, even if there 10 were some othermthat were a nonzero solution, then8k2R;kmis also a solution. Therefore, to constrain our solution, we complete the following minimization:minimizemkPmk2 subject tokmk2= 1(13) To solve this minimization problem, we simply use singular value decompo- sition. If we letP=UDVT, then the solution to the above minimization is to setmequal to the last column ofV. The derivation for this solution is outside the scope of this class and you may refer to Section 5.3 of Hartley &

Zisserman on pages 592-593 for more details.

After reformatting the vectorminto the matrixM, we now want to explicitly solve for the extrinsic and intrinsic parameters. We know our SVD-solvedMis known up to scale, which means that the true values of the camera matrix are some scalar multiple ofM: M=2 4r

T1cotrT2+cxrT3txcotty+cxtz

sinrT2+cyrT3sinty+cytz rquotesdbs_dbs13.pdfusesText_19
[PDF] cours de cadrage video

[PDF] comment faire un bon reportage video

[PDF] techniques de conservation des aliments pdf

[PDF] technique de construction pdf

[PDF] cours procédés généraux de construction pdf

[PDF] méthode de cryptage informatique

[PDF] stratégie d'innovation definition

[PDF] inconvénient de l'innovation

[PDF] cours marketing de linnovation pdf

[PDF] cours innovation pdf

[PDF] cours management de l'innovation pdf

[PDF] stratégie d'innovation apple

[PDF] la chaine documentaire pdf

[PDF] traitement documentaire pdf

[PDF] fiche technique biomaghreb