[PDF] Electrochim Electrochimie Entre l'électrode de travail





Previous PDF Next PDF



Electrochim Electrochimie

Entre l'électrode de travail et l'électrode de référence la tension U est appliquée par un potentiostat



Courbes courant-potentiel

cette électrode. Le courant est donc une mesure de la vitesse de la réaction électrochimique à l'électrode de travail : L'expression du courant est à 



Cinétique électrochimique

vitesse de l'oxydation se déroulant à cette électrode. Pendant dt le travail électrique effectivement mis en jeu vaut électrolyse.



SCHÉMAS ÉLECTROCHIMIE

c'est l'électrode de travail ET : c'est celle-ci que nous allons étudier. Elle peut être cathode ou anode suivant le signe de V = VET ? VCE :.



Cinétique électrochimique

Une réaction électrochimique d'oxydation est une perte d'électron d'une espèce de courant est mesurée de l'électrode de travail vers l'électrolyte.



Analyse du comportement électrochimique de matériaux d

29 nov. 2017 Comportement électrochimique d'aciers inoxydables biocompatibles en milieu ... électrode de travail : disque de nickel) afin d'être au plus ...



Synthèse délectrodes carbonées pour la détection électrochimique

16 mars 2016 Avec E la différence de potentiel à l'équilibre entre l'électrode de travail et la solution (en V) E0 le potentiel standard de l'espèce ...



Dépôts électrochimiques de tantale à partir dune électrolyte liquide

20 mai 2015 IV.3 - Etude du dépôt électrochimique du tantale à tension fixée . ... 800°C ; l'électrode de travail est une électrode d'argent et la ...



Dispersion capacitive de linterface H2SO4/Pt Capacitive dispersion

électrochimique de l'électrode de travail (WE) (fil fin de Pt) sont utilisées: l'une de nettoyage et L'électrochimie interfaciale s'intéresse à la.



Polycopié de travaux pratiques de chimie analytique 2e année

une électrode auxiliaire en platine pour la mesure du courant;. une électrode de travail où se produit la réaction électrochimique qui est une réaction.



[PDF] Filière sciences de la matière Cours délectrochimie SMC Semestre 5

I Polarisation et surtension d'une électrode I 1 Définition : I 2 Différents types de courbe de polarisation II ÉQUATION CINETIQUE I = F(E)



[PDF] Electrochim

Entre l'électrode de travail et l'électrode de référence la tension U est appliquée par un potentiostat appareillage qui permet de maintenir la valeur de la 



[PDF] Cinétique électrochimique - Frédéric Legrand

Une courbe courant-potentiel permet d'étudier pour un système constitué d'une électrode de travail et d'un électrolyte donnés la cinétique globale du système



[PDF] SCHÉMAS ÉLECTROCHIMIE

c'est l'électrode de travail ET : c'est celle-ci que nous allons étudier Elle peut être cathode ou anode suivant le signe de V = VET ? VCE :



[PDF] Chimie Analytique 2éme année pharmacie - Electrochimie

Electrode de référence au calomel ECS : Hg/HgCl2 (saturé) KCl (xM) / ou x représente la concentration molaire de KCl La réaction d'électrode dans 



[PDF] Cinétique électrochimique - IPEST

Si le passage du courant dans le conducteur métallique provoque une oxydation l'électrode est une anode et l'intensité du courant (respectivement densité de 



[PDF] ELECTROCHIMIE - International Nuclear Information System (INIS)

cinétique du comportement des matériaux choisis comme électrode de travail ensuite nous pourrons aborder l'électrolyse de la solution



[PDF] Réactions électrochimiques et courbes intensité – potentiel

On utilise pour cela un montage à trois électrodes : électrode de travail (ET) électrode de référence (Eref) et électrode auxiliaire (CE) La différence est 



[PDF] Cellules électrochimiques : aspects thermodynamiques et cinétiques

Une électrode est un système constitué de deux phases en contact un conducteur majoritairement électronique et un conducteur majoritairement ionique dont l' 



[PDF] Courbes courant-potentiel

Le courant est donc une mesure de la vitesse de la réaction électrochimique à l'électrode de travail : L'expression du courant est à adapter en fonction de l' 

:

Illustration de la couche de Nernst /

Cours de chimie de

llustration de la couche de Nernst / L"actualité chimique - janvier 2003

Cours de chimie de seconde année P

janvier 2003 seconde année PSI

) !30%#4 #).%4)15% $%3 2%!#4)/.3 %,%#42/#()-)15%3 ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Γ

ΐȁ ,! 2%!#4)/. %,%#42/#()-)15% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Γ

,! 6)4%33% $% ,! 2%!#4)/. %,%#42/#()-)15% %4 ,! 2%,!4)/. !6%# ,Ȍ).4%.3)4% )ȁ ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Δ

!ȁ ,! 2%!#4)/. %45$)%% Δ "ȁ 2%,!4)/. %.42% ,! 6)4%33% 6 %4 ,Ȍ).4%.3)4% Ε #ȁ #/.6%.4)/. 0/52 ,Ȍ).4%.3)4% ) Ε

)) %45$% $%3 #/52"%3 ).4%.3)4%ȃ0/4%.4)%, ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Η

ΐȁ -/.4!'% %80%2)-%.4!, ! Β %,%#42/$%3ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ Η

"ȁ 3934%-% 2!0)$% ΐΐ #ȁ 3934%-% ,%.4 ΐΑ $ȁ ./4)/. $% 3524%.3)/. %,%#42/#()-)15% ΐΒ %ȁ #/-0/24%-%.4 $)&&%2%.4 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% ΐΖ &ȁ 0!,)%2 $% $)&&53)/. ΐΗ !ȁ !$$)4)6)4% $%3 ).4%.3)4%3 Αΐ "ȁ 02%6)3)/.3 $%3 2%!#4)/.3 ΑΑ

))) %45$% $% ,Ȍ%,%#42/,93% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΔ

ΐȁ #/.$)4)/. $͒%,%#42/,93% ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΔ

15%,,%3 %30%#%3 3/.4 %,%#42/,93%%3 Ȉ ȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁȁ ΑΗ

Situation du chapitre dans le programme :

Dans la première partie, nous étudions l"allure générale des courbes i-E en distinguant les systèmes dits rapides et les systèmes dits lents. Dans une seconde

partie, les résultats généraux énoncés lors de l"étude des courbes i-E seront appliqués à

l"électrolyse. n e-

ELECTRODE

transfert de charge

électrode

Ox adsorbé

Red adsorbé

Ox désorbé

Red désorbéOx solution

Red solution

REGION PROCHE DE LA

SURFACE DE L"ELECTRODESOLUTION

transfert de matière"double couche" solution

Ox solution

Red solution

SOLUTION

solution e- e- Ox Ox Red réduction

électrode

solution

3®¨³ Ȁ ¨ ώ ȃ ȁ&ȁ£

Ox Red oxydation

Réduction

ȁ&ȁ£xxxxȝ£³ ώ ȃ ȁ&ȁµ

Réduction

Ȁ ¨ ώ £1ȝ£³

Par convention :

Le courant est toujours compté

ELECTRODE ¾¾® SOLUTION

e-e- Ox Red oxydation i > 0 compté positivement dans le sens :

SOLUTION

Ox Red oxydation

Si l"électrode est siège d"une

OXYDATION :

l"électrode fonctionne en dire si elle est le siège d"une les électrons libérés par l"espèce Red sont captés par l"électrode ; une charge dq négative traverse l"interface dans le sens solution ¾¾® l"intensité correspondant à transfert est positive

Ainsi pour une

oxydation à l"anode : ia > 0

Si l"électrode est siège d"une

REDUCTION :

l"électrode fonctionne en

à-dire si elle est le siège d"une

réduction, des électrons passent de l"électrode vers l"espèce en solution

Ox1 ; la charge dq traversant l"interface

Si l"électrode est siège d"une

l"électrode fonctionne en anode, c"est-à- dire si elle est le siège d"une oxydation, les électrons libérés par l"espèce Red sont captés par l"électrode ; une charge dq négative traverse l"interface dans le

¾¾® électrode et

l"intensité correspondant à ce transfert est positive. oxydation à l"anode :

Si l"électrode est siège d"une

l"électrode fonctionne en cathode, c"est- dire si elle est le siège d"une , des électrons passent de l"espèce en solution ; la charge dq traversant l"interface e-e- Ox Red réduction Ox Red réduction i < 0 dans le sens électrode ¾¾® solution est négative et l"intensité correspondant à ce transfert est négative : i c < 0.

REM : i = - n.F.dx/dt = - n.F.[dx/dt)

Red - dx/dt)Ox] = - n.F.[vRed - vOx] = - n.F.vRed + n.F. vOx i = - n.F.vRed + n.F. vOx = ic + ia avec : ic = - n.F.vRed < 0 et ia = + n.F. vOx > 0 #/.34!43 Ȁ oxydation de Red réduction de Ox oxydation de Red réduction de Ox

0 ± £Î¥¨¨³¨®Ǿ "

Ox

RedRedOx

ia i / mA

Eéq

hhhhasurtension faible fort courant branche anodique branche cathodique

3¨¦¨¥¨¢ ³¨® Ȁ

E / V surtension faible fort courant branche anodique i / mA hhhh Red Red Ox branche cathodique iC

Eéq

hhhhca ia surtension fortefort courant OxRed branche anodique E / V fort courant d"oxydation fort courant de réduction hhhhchhhhaVa Vc

0®´± ´

$)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% $)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% $)&&%2%.43 #/-0/24%-%.43 35)6!.4 ,! .!452% $% ,Ȍ%,%#42/$% hhhha branches cathodiquesbranche anodique

O2(g)H2O

H2(g)H+

HgFePt

pH = 0

E par rapport à l"ECS

Pt hhhhchhhhc iDc branche anodique i / mA

Eéq

Fe2+Fe3+

Fe2+Fe3+

branche cathodique iDa = kDFe2+.Fe2+ sol iDc = kDFe3+.Fe3+ sol ),,5342!4)/. Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 branche cathodique i / mA iDc Ag(s) branche anodique

Eéq

AgAg(s)

Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 Ag+ branche anodique Ag+ Ȁ !"3%.#% $%3 0!,)%23 $% $)&&53)/. $!.3 $%58 #!3 branche anodique d"une espèce oxydable soluble ia,l branche cathdique d"une espèce réductrice soluble ic,l %30%#%3 %,%#42/!#4)6%3 $!.3 ,͒%!5 ǿ ͓-Š2͓ $5 3/,6!.4 branche anodique d"une espèce branche anodique d"une espèce oxydable insoluble branche cathdique d"une espèce branche cathodique d"une espèce réductrice insoluble %30%#%3 %,%#42/!#4)6%3 $!.3 ,͒%!5 ǿ ͓-Š2͓ $5 3/,6!.4 branche anodique d"une espèce oxydable insoluble branche cathodique d"une espèce réductrice insoluble

H2(g)H+

02%3%.#% $% 0,53)%523 %30%#%3 %,%#42/!#4)6%3 ! 5.%

E2E1 OH2O

Limites du domaine

d"électroactivité dans l"eau compris entre E

1 et E2

02%3%.#% $% 0,53)%523 %30%#%3 %,%#42/!#4)6%3 ! 5.% %,%#42/$%

O2(g) %,%#42/$% Red1 i / mA i / mA Red1 ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3 #/52"%3 ).4%.3)4%ȃ0/4%.4)%, $% $%58 #/50,%3 2%$/8

Ox2Red2

Ox1

Ox1Red1

Ox2Red2

E / V i / mA

Red1Ox1

Red2Ox2

E / V ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3

0/4%.4)%, $% $%58 #/50,%3 2%$/8

i1+ i2 i2 i1 ,%3 $)&&%2%.4%3 #/.#,53)/.3 35)6!.4 ,%3 0/3)4)/.3 2%30%#4)6%3 $%3 Red2

Ox1Red1

E1E2 ia2 i c1 = - ia2 Ox2 ia2 i c1 = - ia2

Red2Ox2

Ox1Red1

E1 E2 i / mA ia2 = 0 i c1 = - ia2 = 0

Ox1Red1

Red2Ox2

E2 E1 i / mA E1E2 ia2 i c1 = - ia2 i / mA

Red2Ox2

Ox1Red1

Ox1Red1

Ox2Red2

DDDDE Red2 Ox1E2 E1 E

Red1Ox2

Red2Ox2

e- E1E2

Ox1Red1

Red2 Ox1E2 E1 E

Red1Ox2

/± £'4Ǿ0 ώ ȃ !ȁ£xxxx ώ DDDD±'ȁ£xxxx i D±' ώ Α Ȭȃ ΐ ȁ & ȁ %ΐȭ ȃ ΐ Ȭȃ Α ȁ & ȁ %Αȭ DDDD±' ώ Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩ ȬΑȭ

Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩȁ £xxxx ϓ 5!#ȁ £° ???? Α ȁΐ ȁ & ȁ Ȩ%Α ȃ %ΐȩȁ £xxxx ϓ 5!#ȁ ΐȁΑȁ&ȁ£xxxx

5!# ϔ %Α ȟ %ΐ

3®¨³ Ȁ

6! ȟ 6# ϔ %Α ȟ %ΐ

VC UAC VA Ox2Re ReOx1 E VC UAC VA Red Ox1 E

Ox"1Re

d VC CUAC VAed2 ed1 E2

E1Ox2Red2Red1Ox1

E VC CUAC

VAd2E2

E1Red2

Ox1 E d"2Red"2 Ox"1

Ǿ ¨" ¸ /89$!4)/.

E2 E1 E2 E1

6! ȃ 6# ώ 5!#

02)3% %. #/-04% $%3

#).%4)15% 0/52 ,Ȍ%,%#42/,93%ȁ Red i

02)3% %. #/-04% $%3 3524%.3)/.3 Ȁ 02)3% %. #/-04% $%

#42/,93%ȁ

Red2 Ox2

Ox1 d1 E2E1 UAC

Ȁ 02)3% %. #/-04% $% ,Ȍ!30%#4

E

Red2Ox2

Ox1 Red1 E2E1 UAC Ei hhhhahhhhc 5 !# ώ Ȩ%Α ȟ %ΐȩ χ Ȩh ȟ h¢ȩ

5!# ώ Ȩ%Α ȟ %ΐȩ χ Ȩh ȟ h¢ȩ χ 2ȁ)

quotesdbs_dbs35.pdfusesText_40
[PDF] électrode de référence ag/agcl

[PDF] potentiel d'électrode définition

[PDF] pont salin

[PDF] potentiel électrode de référence ag/agcl

[PDF] electrode 1ere espece

[PDF] électrode au chlorure d'argent

[PDF] electrode de platine

[PDF] électrode d'argent

[PDF] électrode de référence au chlorure d'argent

[PDF] montage électrochimique 3 électrodes

[PDF] comment tracer une courbe courant potentiel

[PDF] montage ? trois électrodes

[PDF] comment tracer courbe intensité potentiel

[PDF] exercice courbe intensité-potentiel

[PDF] tracé des courbes ie de fe2+/fe3+