[PDF] Formules de Taylor. Applications. 1 Formule de Taylor avec reste





Previous PDF Next PDF



CAPES 2007 ( Correction du sujet danalyse )

CAPES 2007. ( Correction du sujet d'analyse ). Derni`ere mise `a jour : Mardi 17 Avril 2007. Vincent OBATON lycée Stendhal de Grenoble 



CAPES externe 2007 de Mathématiques

webmaster@capes-de-maths.com CAPES externe 2007 : Deuxième composition. Introduction. Dans tout le problème n désigne un entier naturel non nul.



CAPES MATHÉMATIQUES Concours interne et CAERPC 2007

Pour le CAPES comme pour le CAER la barre d'admissibilité de 2007 est (Repères 2004)



CAPES de Mathématiques Université Joseph Fourier Préparation `a

Année 2007-2008. Alg`ebre et probabilités 17 Un probl`eme de CAPES blanc. 17 Bis Corrigé ... The ultimate goal of mathematics is to eliminate any.



Sujets de C.A.P. (sessions 2007 à 2009 )

1 juin 2008 CAP 2009 secteur 1. [http://pedagogie.ac-amiens.fr/math-sciences/IMG/sujetsCAP_2009/CAP2009_secteur1_met.doc]. CAP 2009 secteur 2.



1.3 Statistiques

CAFEP 2007. 160. 1019. 693. 267. 250. 123. CAPES 2008. 806. 4711. 3453. 1802. 1564. 806. CAFEP 2008. 155. 964. 631. 200. 191. 90. CAPES 2009.



Formules de Taylor. Applications. 1 Formule de Taylor avec reste

CAPES 2007. Décembre 2007. Oral Analyse. Formules de Taylor. Applications. Remarques Le niveau naturel de cette leçon est celui du Deug. Pré-requis.



Rapport du jury

Le jury du CAPES externe de Mathématiques met à disposition des candidats et des formateurs un site spécifique : http://capes-math.org/.



CAPES INTERNE 2007 CORRIGE

CAPES Interne - 2007 - Corrigé. 4.3. O s(x) y x. 5.1. (s(x) ? x) = c(x) ? 1 ? 0 d'où pour x ? 0

CAPES 2007D´ecembre 2007

Oral Analyse

Formules de Taylor. Applications.

RemarquesLe niveau naturel de cette le¸con est celui du Deug.

Pr´e-requis

1. Continuit´e, d´erivabilit´e, in´egalit´e des accroissements finis, th´eor`eme de Rolle, d´erivabilit´e

d"ordre sup´erieur, int´egration.

2. Pour les applications : s´eries enti`eres.

1 Formule de Taylor avec reste int´egral

1.1 Th´eor`eme

Th´eor`eme 1.1Soitf: [a,b]→IR une fonction de classeCn+1. On a: f(b) =f(a) +n? k=1f (k)(a) k!(b-a)k+1n!? b a(b-t)nf(n+1)(t)dt. PreuveElle se fait par r´ecurrence surnen int´egrant par parties le reste int´egralRn(f) = 1 n!? b a(b-t)nf(n+1)(t)dt. D´efinition 1.1On appelle partie r´eguli`ere d"ordrendu d´eveloppement de Taylor def enale polynˆomePn(x)d´efini parPn(x) =f(a) +n? k=1f (k)(a) k!(x-a)k. RemarqueApr`es le changement de variablet=a+(b-a)s, le reste int´egral peut s"´ecrire sous la forme R n(f) =(b-a)n+1 n!? 1

0(1-s)nf(n+1)(a+s(b-a))ds.

1.2 Applications

•D´eveloppement en s´erie enti`ere

On va traiter l"exemple classique suivant. On d´efinit la fonction exponentielle exp comme l"unique fonction d´erivable sur IR, solution de l"´equation diff´erentielle : y ?(x) =y(x) pour toutx?IR, y(0) = 1. Il vient imm´ediatement (par r´ecurrence) que exp est de classeC∞sur IR et que, pour toutn?IN, exp(n)(0) = 1. On d´emontre sans probl`eme que exp ne s"annule pas (on rappelle pour cela qu"il suffit d"´etudier la fonctionx→exp(x)exp(-x)) et donc reste positive et est croissante. La formule de Taylor avec reste int´egral `a l"ordre n s"´ecrit alors : exp(x) = 1 +n? k=1x k k!+xn+1n!? 1

0(1-t)nexp(tx)dt(?)

On peut alors majorer grossi`erement le reste de la mani`eresuivante : ?exp(x)-? 1 +n? k=1x k k!? ?=?????x n+1n!? 1

0(1-t)nexp(tx)dt?????

|x|n+1 n!exp(|x|)? 1

0(1-t)ndt=|x|n+1(n+ 1)!exp(|x|)

Le dernier terme de droite tend vers 0 quandntend vers +∞. Il en r´esulte que, pour toutx?IR, on a exp(x) = 1 ++∞? k=1x k k!

RemarqueGrˆace `a (?), on a :e= 1 +n?

k=11 k!+1n!? 1

0(1-t)nexp(t)dt. En´etudiant

sur [0,1] la fonctiont→(1-t)nexp(t), on voit qu"elle reste comprise entre 0 et 1 quandn≥1. On en d´eduit l"encadrement : 1 + n? k=11 k=11k!+1n! et en particulier, le fait queeest irrationnel. •On peut alors citer quelques d´eveloppements en s´eries enti`eres c´el`ebres: ceux de sinx, cosx, (1 +x)αo`uαest un r´eel non nul ...

•Exercice

Montrer qu"une fonction de classeC∞sur IR est une fonction polynˆome si, et seule- ment si, ses d´eriv´ees successives sont nulles `a partir d"un certain rang.

2 Formule de Taylor-Lagrange

2.1 Th´eor`eme(s)

Th´eor`eme 2.1Soitf: [a,b]→IR une fonction de classeCn+1. Alors il existec?[a,b] tel que f(b) =f(a) +n? k=1f (k)(a) k!(b-a)k+(b-a)n+1(n+ 1)!f(n+1)(c). PreuveOn d´eduit ce r´esultat de la formule de Taylor avec reste int´egral et de la formule de la moyenne. Si on notemle minimum de la fonction continuef(n+1)sur [a,b] etM son maximum, on remarque que 1 Le th´eor`eme des valeurs interm´ediaires assure alors l"existence d"unc?[a,b] tel que f (n+1)(c) = (n+ 1)? 1

0(1-s)nf(n+1)(a+s(b-a))ds

et on conclut.

On a le r´esultat plus pr´ecis suivant :

Th´eor`eme 2.2* Soitf: [a,b]→IR une fonction de classeCnsur[a,b]et dont la d´eriv´een+ 1i`eme existe sur]a,b[. Alors il existec?]a,b[tel que f(b) =f(a) +n? k=1f (k)(a) k!(b-a)k+(b-a)n+1(n+ 1)!f(n+1)(c). Preuve 1Le casn= 0 correspond `a l"´egalit´e des accroissements finis. Pourn≥1, on consid`ere la fonction n(t) =f(b)-f(t)-n? k=1f (k)(t) k!(b-t)k-λ(b-t)n+1(n+ 1)! o`u l"on a choisiλpour que Θn(a) = 0. (On ne cherche pas pour le moment `a exprimer ce λ.) Comme Θn(b) = 0, on applique le th´eor`eme de Rolle. Il existe doncc?]a,b[ tel que n(c) = 0. Cette ´egalit´e s"´ecrit -f?(c)-n? k=1f (k+1)(c) k!(b-c)k+n? k=1f (k)(c)(k-1)!(b-t)k-1+λ(b-c)nn! qui, apr`es simplications, donne

λ=f(n+1)(c)

Dans l"expression Θ

n(a) = 0, il suffit de remplacerλpar la valeur que l"on vient de trouver. Ce qui termine cette preuve.

Preuve 2Elle utilise le th´eor`eme des accroissements finis g´en´eralis´es que l"on rappelle et

d´emontre pour le confort du lecteur. Proposition 2.1* (Accroissements finis g´en´eralis´es) Soientfetgdes fonctions de[a,b] dans IR, continues sur[a,b]et d´erivables sur]a,b[. Alors il existec?]a,b[tel que: ?f(b)-f(a)f?(c) g(b)-g(a)g?(c)????? = 0.

(Comment cela se traduit-il g´eom´etriquement pour une courbe param´etr´ee r´eguli`ere?)

Preuve de la propositionOn applique le th´eor`eme de Rolle `a la fonction d´efinie sur [a,b] par:h(t) = (g(t)-g(a))(f(b)-f(a))-(f(t)-f(a))(g(b)-g(a)). Suite de la preuve 2On d´efinit le resteRn(x) =f(a+x)-f(a)-n? k=1f (k)(a) k!xkpour x?[0,b-a] et on le compare `aSn(x) =xn+1 (n+ 1)!. On a R n(0) =R?n(0) =...=R(n)n(0) = 0, S n(0) =S?n(0) =...=S(n)n(0) = 0.

De l"utilisation r´ep´et´ee du th´eor`eme des accroissements finis g´en´eralis´es il r´esulte l"existence

telle que R n(x) CommeS(n+1)n(ξn+1) = 1, on obtient, pourx=b-a,Rn(b-a) =(b-a)n+1(n+ 1)!f(n+1)(a+ξn+1). RemarqueNoter que la formule de Taylor-Lagrange (de mˆeme que le th´eor`eme de Rolle) n"est pas valable sifest `a valeurs dans lC. Penser par exemple `a la fonction f(x) =eixsur l"intervalle [0,2π].

2.2 Applications

•Convexit´eSoitf:I→IR (Iintervalle de IR) de classeC2surI. Sif??≥0 surI alors la courbe repr´esentative defest au dessus de ses tangentes. •In´egalit´es de KolmogorovSoitf:]a,+∞[→IR une fonction deux fois d´erivable. On suppose que|f|et|f??|sont born´ees respectivement parM0etM2. Alors|f?| est born´ee par 2⎷ M0M2. preuveSoitx?]a,+∞[ etu?]0,+∞[. Il existe alorscx,u?[x,x+u] tel que f ?(x) =1 u? f(x+u)-f(x)-u22!f??(cx,u)?

On en d´eduit que

u+u2M2. SiM2= 0, on fait tendreuvers +∞dans l"in´egalit´e pr´ec´edente et on obtientf?= 0 sur ]a,+∞[ et le r´esultat annonc´e est ´evidemment v´erifi´e. SiM2?= 0, on minimise l"expression de droite dans l"in´egalit´e en choisissantu= 2? M0

3 Formule de Taylor-Young

3.1 Th´eor`eme(s)

Th´eor`eme 3.1Soitf:I→IR une fonction de classeCnsur l"intervalleI. Soita?I. Alors il existe une fonction?:I→IR v´erifiantlimx→a?(x) = 0telle que, pour toutx?I, f(x) =f(a) +n? k=1f (k)(a) k!(x-a)k+ (x-a)n?(x). PreuveSoitx?I. On ´ecrit la formule de Taylor-Lagrange `a l"ordren-1 sur l"intervalle [a,x] (ou [x,a]); Il existecx?[a,x] tel que f(x) =f(a) +n-1? k=1f (k)(a) k!(x-a)k+(x-a)nn!f(n)(cx) =f(a) +n? k=1f (k)(a) k!(x-a)k+(x-a)nn!?f(n)(cx)-f(n)(a)?.(?)

On pose, pourx?=a,

?(x) =1 (x-a)n? f(x)-f(a)-n? k=1f (k)(a)k!(x-a)k? et, commef(n)est continue ena, on d´eduit de l"´egalit´e (?) que limx→a?(x) = 0.

On a le r´esultat plus fort suivant:

Th´eor`eme 3.2* Soita?I. On suppose que la fonctionf:I→IR admet une d´eriv´ee d"ordrenau pointa. Alors il existe une fonction?:I→IR v´erifiantlimx→a?(x) = 0telle que, pour toutx?I, f(x) =f(a) +n? k=1f (k)(a) k!(x-a)k+ (x-a)n?(x). Preuve* La preuve se fait par r´ecurrence surn. Soit doncn?N?et notonsHnl"assertion: pour toute fonctionf:I→IR,nfois d´erivable au pointa, on a : lim x→a,x?=a1 (x-a)n? f(x)-f(a)-n? k=1f (k)(a)k!(x-a)k? = 0 H

1est clairement vraie : c"est la d´efinition de la d´erivabilit´e au pointa. Supposons donc

quotesdbs_dbs50.pdfusesText_50
[PDF] capes 2018 dates

[PDF] capes allemand 2015

[PDF] capes anglais 2011

[PDF] capes anglais 2013

[PDF] capes anglais 2017

[PDF] capes biologie 2016

[PDF] capes dates 2018

[PDF] capes de sciences physiques : tome 1

[PDF] capes de sciences physiques tome 2 chimie cours et exercices

[PDF] capes de svt

[PDF] capes documentation

[PDF] capes documentation livre

[PDF] capes histoire 2018 bibliographie

[PDF] capes histoire géographie 2017

[PDF] capes histoire géographie difficile