[PDF] [PDF] VECTEURS ET REPÉRAGE - maths et tiques





Previous PDF Next PDF



DÉTERMINANTS DANS LE PLAN ET DANS LESPACE

le déterminant comme un volume signé. On note u · v le produit scalaire de deux vecteurs et u la norme. 1. Dans le plan. 1.1. Volume des parallélogrammes.





Déterminants

Autrement dit la nullité du déterminant de deux vecteurs traduit leur colinéarité Dans l'espace muni du produit scalaire usuel



Cours5 Determinant

Dans tout ce paragraphe les vecteurs sont les vecteurs de l'espace usuel. mixte de trois vecteurs change de signe lorsqu'on échange deux vecteurs.



Géométrie dans lespace

13-Nov-2012 L'outil qui remplace en quelque sorte le déterminant est le produit vectoriel. Définition 9. Soient ??u et ??v deux vecteurs non colinéaires ...



Droites et plans dans lespace

déterminant vaudrait 0! En dimension 3 avec deux vecteurs à 3 composantes : u =. u1 u2.



VECTEURS ET REPÉRAGE

Le critère de colinéarité n'est pas vérifié donc les vecteurs H? et ? ne sont donc pas colinéaires. 2. Déterminant de deux vecteurs. Définition : Soit 



DÉTERMINANTS

En d'autres termes la colinéarité de deux vecteurs est caractérisée dans le Seul le déterminant d'une famille de n vecteurs dans un espace vectoriel de ...



TS Les coordonnées dans lespace

Dans le plan muni d'un repère orthogonal la valeur absolue du déterminant de deux vecteurs est égale à l'aire du parallélogramme construit sur ces deux 



[PDF] DÉTERMINANTS DANS LE PLAN ET DANS LESPACE

On note u · v le produit scalaire de deux vecteurs et u la norme 1 Dans le plan 1 1 Volume des parallélogrammes Considérons deux vecteurs u = (x1y1) 



[PDF] Déterminants

On appelle déterminant de A noté det(A) le déterminant dans la base canonique de Kn des deux ou trois vecteurs colonnes de la matrice A Puis on définit le 



[PDF] Produit vectoriel et déterminant dans lespace

Déterminant de deux vecteurs du plan en base orthonormée - Rappels Déterminant de trois vecteurs de l'espace en base orthonormée Etant donné une base



[PDF] Déterminant

Nous commencerons le chapitre en introduisant le déterminant d'un système de deux vecteurs dans R2 Christophe Ambroise Déterminant 3 / 39 



[PDF] Chapitre 1 Géométrie vectorielle euclidienne du plan et de lespace

On rappelle que le déterminant d'une matrice est le déterminant de la famille des vecteurs colonnes de cette matrice Proposition 2 2 2 (Déterminant d'une 



[PDF] Géométrie de lespace

En effet le déterminant est nul ssi w est orthogonal à u?v qui est un vecteur orthogonal au plan Vect(u v) Ainsi le déterminant de ces trois vecteurs est nul 



[PDF] Déterminants de deux vecteurs Vecteurs colinéaires - Parfenoff org

Vecteurs colinéaires I) Déterminants de deux vecteurs Soit (O ? ?) un repère du plan Les vecteurs ??? et ??? ont pour coordonnées



[PDF] R - produit scalaire déterminant produit vectoriel droites et plans

28 août 2017 · espace vectoriel réel (Ses éléments sont alors appelés des vecteurs ) Définition 8 4 Si A “ pa1a2q et B “ pb1b2q sont deux éléments de R



[PDF] VECTEURS ET REPÉRAGE - maths et tiques

http://www maths-et-tiques fr/telech/Lecture_coord pdf Méthode : Vérifier si deux vecteurs sont colinéaires à l'aide du déterminant



[PDF] Sommaire 1 Déterminant de n vecteurs dans une base B

Dans tout le chapitre E est un espace vectoriel sur K (R ou C) et B = (e1e2 en) est une base 1 Déterminant de n vecteurs dans une base B 1 1 Forme n- 

:

1 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

VECTEURS ET REPÉRAGE

Tout le cours en vidéo : https://youtu.be/9OB3hct6gak

Partie 1 : Repère du plan

Trois points du plan non alignés O, I et J forment un repère, que l'on peut noter (O, I, J). L'origine O et les unités OI et OJ permettent de graduer les axes (OI) et (OJ).

Si on pose í µâƒ— = í µí µ

et í µâƒ— = í µí µ , alors ce repère se note également (O, í µâƒ— ,

Définitions :

- On appelle repère du plan tout triplet (O, í µâƒ—, í µâƒ—) où O est un point et í µâƒ— et í µâƒ— sont deux vecteurs non

colinéaires.

- Un repère est dit orthogonal si í µâƒ— et í µâƒ— ont des directions perpendiculaires.

- Un repère est dit orthonormé s'il est orthogonal et si í µâƒ— et í µâƒ— sont de norme 1.

TP info : Lectures de coordonnées :

Partie 2 : Coordonnées d'un vecteur

Exemple :

Vidéo https://youtu.be/8PyiMHtp1fE

Pour aller de A vers B, on parcourt un chemin :

3 unités vers la droite et 2 unités vers le haut.

Ainsi í µí µ

=3í µâƒ—+2í µâƒ—.

Les coordonnées de í µí µ

se notent . 3 2 / ou (3;2). On préfèrera la première notation.

í µâƒ— O í µâƒ— Repère orthogonal í µâƒ— O í µâƒ— Repère orthonormé í µâƒ— O í µâƒ— Repère quelconque í µâƒ— í µâƒ— I J O

2 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Déterminer les coordonnées d'un vecteur par lecture graphique

Vidéo https://youtu.be/8PyiMHtp1fE

a) Dans le repère (O, í µâƒ—, í µâƒ—), placer les points í µ. -1 -2 -2 3 1 -4 4 -2 b) Déterminer les coordonnées des vecteurs í µí µ et í µí µ par lecture graphique.

Correction

On a :

=-í µâƒ—+5í µâƒ— donc í µí µ a pour coordonnées . -1 5 =3í µâƒ—+2í µâƒ— donc í µí µ a pour coordonnées . 3 2

Propriété :

Soit deux points í µ.

/ et í µ.

Le vecteur í µí µ

a pour coordonnées . Méthode : Déterminer les coordonnées d'un vecteur par calcul

Vidéo https://youtu.be/wnNzmod2tMM

Calculer les coordonnées des vecteurs í µí µ et í µí µ , tels que : 2 1 5 3 -1 -2 -2 3 1 -4 / et í µ. 4 -2

Correction

5-2 3-1 3 2 -2- -1 3- -2 A = . -1 5 4-1 -2- -4 A = . 3 2

3 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Propriétés :

Soit deux vecteurs 𝐼⃗.

/ et í µâƒ—í±¦

A, et un réel í µ.

On a :

A í µí µí°¼âƒ— í±¦

A -𝐼⃗.

𝐼⃗ et í µâƒ— sont égaux lorsque í µ=í µâ€² et í µ=í µâ€². Méthode : Appliquer les formules sur les coordonnées de vecteurs

Vidéo https://youtu.be/rC3xJNCuzkw

En prenant les données de la méthode précédente, calculer les coordonnées des vecteurs 3í µí µ

4í µí µ

et 3í µí µ -4í µí µ

Correction

On a : í µí µ

3 2 / et í µí µ -1 5

3í µí µ

3×3

3×2

9 6 /, 4í µí µ 4× -1

4×5

-4 20

3í µí µ

-4í µí µ 9- -4 6-20 13 -14 Méthode : Calculer les coordonnées d'un point défini par une égalité vectorielle

Vidéo https://youtu.be/eQsMZTcniuY

Soit les points í µ.

1 2 -4 3 1 -2

Déterminer les coordonnées du point í µ tel que í µí µí µí µ soit un parallélogramme.

Correction

í µí µí µí µ est un parallélogramme si et seulement si í µí µ

On pose .

/ les coordonnées du point í µ.

On a alors : í µí µ

-4-1 3-2 -5 1 / et í µí µ

1-í µ

-2-í µ A

Donc : 1-í µ

=-5 et -2-í µ =1 =-5-1 et -í µ =1+2 =6 et í µ =-3.

Les coordonnées du point í µ sont donc .

6 -3

4 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Partie 3 : Colinéarité de deux vecteurs

1. Critère de colinéarité

Propriété : Soit deux vecteurs 𝐼⃗ . / et í µâƒ— í±¦ A.

Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que : í µí µ'-í µí µ'=0.

Remarque : Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que les coordonnées des deux

vecteurs sont proportionnelles soit : í µí µ'=í µí µ'.

Démonstration au programme :

Vidéo https://youtu.be/VKMrzaiPtw4

• Si l'un des vecteurs est nul alors l'équivalence est évidente. • Supposons maintenant que les vecteurs 𝐼⃗ et í µâƒ— soient non nuls.

Dire que les vecteurs 𝐼⃗.

/ et í µâƒ—í±¦ A sont colinéaires équivaut à dire qu'il existe un nombre réel í µ tel que 𝐼⃗ =í µí µâƒ—.

Les coordonnées des vecteurs 𝐼⃗ et í µâƒ— sont donc proportionnelles et le tableau ci-dessous est un

tableau de proportionnalité : Donc : í µí µ'=í µí µ' soit encore í µí µ'-í µí µ'=0. Réciproquement, si í µí µ'-í µí µ'=0. Le vecteur í µâƒ— étant non nul, l'une de ses coordonnées est non nulle. Supposons que í µ'≠0. Posons alors í µ= . L'égalité í µí µ'-í µí µ'=0 s'écrit : í µí µ'=í µí µ'.

Soit : í µ =

Comme on a déjà í µ = í µí µâ€², on en déduit que 𝐼⃗ =í µí µâƒ—.

Méthode : Vérifier si deux vecteurs sont colinéaires

Vidéo https://youtu.be/eX-_639Pfw8

Dans chaque cas, vérifier si les vecteurs 𝐼⃗ et í µâƒ— sont colinéaires. a) 𝐼⃗. 4 -7 / et í µâƒ—. -12 21
/ b) 𝐼⃗. 5 -2 / et í µâƒ—. 15 -7

Correction

a) í µí µ'-í µí µ'=4×21- -7 -12 =84-84=0.

Le critère de colinéarité est vérifié donc les vecteurs 𝐼⃗ et í µâƒ— sont donc colinéaires.

On peut également observer directement que í µâƒ—=-3𝐼⃗.

5 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr b) í µí µ'-í µí µ'=5× -7 -2 15 =-35+30=-5≠0.

Le critère de colinéarité n'est pas vérifié donc les vecteurs 𝐼⃗ et í µâƒ— ne sont donc pas colinéaires.

2. Déterminant de deux vecteurs

Définition : Soit deux vecteurs 𝐼⃗ . / et í µâƒ— í±¦ A.

Le nombre í µí µ'-í µí µ' est appelé déterminant des vecteurs 𝐼⃗ et í µâƒ—.

On note : í µí µí µ

Propriété : Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que í µí µí µ

=0. Méthode : Vérifier si deux vecteurs sont colinéaires à l'aide du déterminant

Vidéo https://youtu.be/MeHOuwy81-8

Dans chaque cas, vérifier si les vecteurs 𝐼⃗ et í µâƒ— sont colinéaires. a) 𝐼⃗. -6 10 / et í µâƒ—. 9 -15 / b) 𝐼⃗. 4 9 / et í µâƒ—. 11 23

Correction

a) í µí µí µ =R -69 10-15 R= -6 -15 -10×9=90-90=0 Les vecteurs 𝐼⃗ et í µâƒ— sont donc colinéaires. b) í µí µí µ =R 411
923

R=4×23-9×11=92-99=-7≠0

Les vecteurs 𝐼⃗ et í µâƒ— ne sont donc pas colinéaires.

3. Applications

Propriétés :

1) Dire que les droites (í µí µ) et (í µí µ) sont parallèles revient à dire que les vecteurs í µí µ

et í µí µ sont colinéaires.

2) Dire que les points í µ, í µ et í µ sont alignés revient à dire que les vecteurs í µí µ

et í µí µ sont colinéaires.

Méthode : Appliquer la colinéarité

Vidéo https://youtu.be/hp8v6YAQQRI

Vidéo https://youtu.be/dZ81uKVDGpE

6 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

On considère les points í µ.

-1 1 3 2 -2 -3 6 -1 / et í µ. 5 0 a) Démontrer que les droites (í µí µ) et (í µí µ) sont parallèles. b) Démontrer que les points í µ, í µ et í µ sont alignés.

Correction

a) í µí µ 3- -1 2-1 4 1 / et í µí µ 6- -2 -1- -3 A = . 8 2 í µí µí µSí µí µ T=R 48
12

R=4×2-8×1=8-8=0

Les vecteurs í µí µ

et í µí µ sont colinéaires. Donc les droites (í µí µ) et (í µí µ) sont parallèles.

Remarque :

On aurait pu également remarquer que les coordonnées de í µí µ et í µí µ sont proportionnelles pour en déduire que les vecteurs í µí µ et í µí µ sont colinéaires. b) í µí µ 3-5 2-0 -2 2 / et í µí µ 6-5 -1-0 1 -1 í µí µí µSí µí µ T=R -21 2-1

R=-2×

-1 -2×1=0

Les vecteurs í µí µ

et í µí µ sont colinéaires. Donc les points í µ, í µ et í µ sont alignés.

Partie 4 : Coordonnées du milieu d'un segment

Propriété : Soit deux points í µ.

/ et í µ. Le milieu í µdu segment [í µí µ] a pour coordonnées : X Y

Démonstration :

Considérons le parallélogramme construit à partir de í µ, í µ et í µ.

Soit í µ son centre.

Alors í µí µ

(ou í µ) a donc les mêmes coordonnées que celles du vecteur ) soit : Z [=X Y.

B O M A

7 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Calculer les coordonnées d'un milieu

Vidéo https://youtu.be/YTQCtSvxAmM

On considère les points í µ.

2quotesdbs_dbs25.pdfusesText_31
[PDF] aire ellipse integrale

[PDF] formule périmètre triangle rectangle

[PDF] périmètre d'un triangle quelconque

[PDF] calcul perimetre triangle rectangle avec inconnue

[PDF] calculer le périmètre d'un rectangle

[PDF] aire urbaine toulouse insee

[PDF] aire urbaine bordeaux

[PDF] l'étalement urbain de toulouse

[PDF] aire urbaine de lille

[PDF] aire urbaine toulouse carte

[PDF] pole urbain toulouse

[PDF] aire urbaine lyon

[PDF] auat

[PDF] compétences maths cm2 2016

[PDF] aires fonctionnelles du cortex cérébral