[PDF] [PDF] ALGEBRE LINEAIRE Cours et exercices





Previous PDF Next PDF



Notes de Cours dALGEBRE LINEAIRE.

Exercice 2.2 1. Montrer que si A et B sont deux familles de vecteurs telles que A?B



ALGEBRE LINEAIRE Cours et exercices

May 22 2014 Cours d'algèbre linéaire. 1. Espaces vectoriels. 2. Applications linéaires. 3. Matrices. 4. Déterminants. 5. Diagonalisation ...



livre-algebre-1.pdf

La seconde partie est entièrement consacrée à l'algèbre linéaire. C'est un domaine totalement nouveau pour vous et très riche qui recouvre la notion de matrice 



Alg`ebre linéaire 1

Dec 28 2020 II Cours d'alg`ebre linéaire 1. 11. 5 Espaces vectoriels et applications linéaires. 11. 5.1 Les huit axiomes d'un espace vectoriel .



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

inverses sont des problèmes importants d'algèbre linéaire. Par exemple considérons la matrice suivante de M3(R). A =.. 1 1 3. 2 0 1. 1 1 2.



MEU152 – Algèbre linéaire

Exercice de cours 2 (règles de calcul dans un espace vectoriel). 1. Démontrer la proposition 3. 2. En déduire que pour tous x y ? E et tous rééls ?



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

1. Espace vectoriel des matrices. 57. 2. Produit de deux matrices. 59. 3. Matrices carrées personne ayant besoin d'outils de bases d'Algèbre linéaire.



L1 INTRODUCTION À LALGÈBRE LINÉAIRE.

L1 INTRODUCTION À L'ALGÈBRE LINÉAIRE. Les exercices qui suivent sont la traduction française des exercices du cha- pitre 1 – 3 du livre. Linear Algebra with 



Chapitre 1: Algèbre Linéaire

On appelle : Vecteurs les éléments de E ;. Scalaires les éléments de K;. Vecteur nul le vecteur 0. Mathématiques 3 2015. Chapitre 1: Alg`ebre Linéaire.



Feuille dexercices I : révisions dalgèbre linéaire 1

Algèbre linéaire 2. L2 - MATH. Feuille d'exercices I : révisions d'algèbre linéaire 1. Exercice 1. 1. Montrer que les vecteurs v1 = (01



[PDF] ALGEBRE LINEAIRE Cours et exercices

22 mai 2014 · Cours d'algèbre linéaire 1 Espaces vectoriels 2 Applications linéaires 3 Matrices 4 Déterminants 5 Diagonalisation 



[PDF] Alg`ebre linéaire 1 - Département de mathématiques - UQAM

28 déc 2020 · II Cours d'alg`ebre linéaire 1 11 5 Espaces vectoriels et applications linéaires 11 5 1 Les huit axiomes d'un espace vectoriel



[PDF] LALGÈBRE LINÉAIRE POUR TOUS - Mathématiques

L'algèbre linéaire est un langage universel qui sert à décrire de nombreux phénomènes en mé- canique électronique et économie par exemple Il n'est donc pas 



[PDF] Algèbre linéaire

29 mar 2023 · Il couvre les concepts de base de l'algèbre linéaire Les compétences visées sont la capacité à résoudre des systèmes d'équations linéaires 



[PDF] livre-algebre-1pdf - Exo7 - Cours de mathématiques

La seconde partie est entièrement consacrée à l'algèbre linéaire C'est un domaine totalement nouveau pour vous et très riche qui recouvre la notion de 



[PDF] Notes de cours - Algèbre Linéaire

Il existe une unique application linéaire f : E ? F telle que f(ei) = ui pour tout i ? {1 n} Preuve : Exercice ! 2 3 3 Noyau Definition 27 Soient EF 



[PDF] Notes de Cours dALGEBRE LINEAIRE - Mathématiques à Angers

Ce recueil est constitué des notes du cours d'Alg`ebre Linéaire de L1 MPCIE donné au 2e semestre de l'année universitaire 2014/2015



[PDF] L1 INTRODUCTION À LALGÈBRE LINÉAIRE

L1 INTRODUCTION À L'ALGÈBRE LINÉAIRE Les exercices qui suivent sont la traduction française des exercices du cha- pitre 1 – 3 du livre Linear Algebra with 



[PDF] Cours – Algèbre linéairepdf

ALGÈBRE 1– RAPPELS ET COMPLÉMENTS D'ALGÈBRE LINÉAIRE SPÉCIALES PSI – LYCÉE BUFFON I- FONDEMENTS DE LA THÉORIE 1 STRUCTURE D'ESPACE VECTORIEL



[PDF] Algèbre linéaire – Cours I Espaces vectoriels - IRMA Strasbourg

L'algèbre linéaire est l'étude des propriétés des espaces vectoriels et de tous les concepts construits à partir d'eux Remarque

:
ISPB, Faculté de Pharmacie de Lyon Année 2014 - 2015

Filière ingénieur

3

ème année de pharmacie

ALGEBRE LINEAIRE

Cours et exercices

L. Brandolese

M-A. Dronne

Cours d"algèbre linéaire

1. Espaces vectoriels

2. Applications linéaires

3. Matrices

4. Déterminants

5. Diagonalisation

1

Chapitre 1

Espaces vectoriels

1. Définition

Soit K un corps commutatif (K = R ou C)

Soit E un ensemble dont les éléments seront appelés des vecteurs. On munit E de : · la loi interne " + » (addition vectorielle) : E)yx(,E)y,x(2Î+Î" · la loi externe " . » (multiplication par un scalaire) :

E)x.( K,λE,xÎlÎ"Î"

(E, +, .) est un espace vectoriel (ev) sur K (K-ev) si :

1) (E,+) est un groupe commutatif

· l"addition est associative : )zy(xz)yx(,E)z,y,x(3++=++Î"

· l"addition est commutative :

xyy x,E)y,x(2+=+Î"

· Il existe un élément neutre

E0EÎ tq x0 xE,xE=+Î"

E0x"x"x x tqE x"! E,x=+=+Î$Î" (x" est appelé l"opposé de x et se note (-x))

2) la loi externe doit vérifier :

2E)y,x( K,λÎ"Î",y.x.)yx.(l+l=+l

Ex ,K),λ(2

21Î"Îl",x.x.x).(2121l+l=l+l

Ex ,K),λ(2

21Î"Îl",x)..()x..(2121ll=ll

x1.x E,x=Î"

Propriétés :

Si E est un K-ev, on a :

1)

KλE,xÎ"Î",

EE0ou x0λ0λ.x

2) )x.()x.(x).(-l=l-=l-

Exemple :

Soit K = R et E = Rn. (Rn,+, . ) est un R-ev

1) loi interne :

)x..., ,x,(x x,Rxn21n=Î" et )y..., ,y,(yy ,Ryn21n=Î" )yx..., ,yx,y(xyxnn2211+++=+

2) loi externe :

)x..., ,x,x(.x : R ,Rxn21nlll=lÎl"Î" 2

2. Sous espace vectoriel (sev)

Définition :

Soit E un K-ev et

EFÌ. F est un sev si :

· F ¹ AE

· la loi interne " + » est stable dans F :

F)yx(,F)y,x(2Î+Î"

· la loi externe " . » est stable dans F :

F)x.( K,λF,xÎlÎ"Î"

Remarque : Si E est un K-ev, {}E0 et E sont 2 sev de E

Exercice 1 :

Soit E l"ensemble défini par {}0xx2x/R)x,x,x(E3213

321=-+Î=

Montrer que E est un sev de R

3

Exercice 2 :

Soit E un ev sur K et F

1 et F2 deux sev de E. Montrer que 21FFI est un sev de E

3. Somme de 2 sev

Théorème :

Soit F

1 et F2 deux sev de E. On appelle somme des sev F1 et F2 l"ensemble noté (F1 + F2) défini par :

{}2121Fyet Fy / xxFFÎÎ+=+

On peut montrer que F1 + F2 est un sev de E

Somme directe de sev :

Définition :

On appelle somme directe la somme notée F

1 + F2

E2121

210FFFFFFFF

I Remarque : Si F = E, on dit que F1 et F2 sont supplémentaires

Propriété :

F = F

1 + F2 ssi FzÎ", z s"écrit de manière unique sous la forme z = x + y avec 1FxÎ et 2FyÎ

Exercice 3 :

{}R xavec ,0,0)(xF111Î= et {}2

32322R)x,(x avec )x,x(0,FÎ=

Montrer que F

1 et F2 sont supplémentaires de R3 c"est-à-dire F1 + F2 = R3

3

4. Combinaisons linéaires, familles libres, liées et génératrices

Définition :

Soit E un K-ev et

{}IiixÎ une famille d"éléments de E. On appelle combinaison linéaire de la famille {}IiixÎ, l"expression ∑ Îl

Iiiix avec KiÎl

Définition :

On dit que la famille

{}IiixÎ est libre si Ii 00xiEIiiiÎ"=l⇒=l∑

Définition :

On dit que la famille

{}IiixÎ est liée si elle n"est pas libre : ()()EIiiip10xλ tq0,...,0,...,=¹ll$∑

Définition :

On appelle famille génératrice de E une famille telle que tout élément de E est une combinaison

linéaire de cette famille : ()∑

IiiiIiixλ x tqλ ,Ex

Définition :

On dit que la famille

{}IiixÎ est une base de E si {}IiixÎ est une famille libre et génératrice

Propriété :

On dit que la famille

{}IiixÎ est une base de E ssi ExÎ", x s"écrit de manière unique ∑

Iiiixλx

Démonstration (1) ⇒ (2) (D1)

Exercice 4 :

Soit 2

1R)0,1(eÎ= et 2

2R)1,0(eÎ=. La famille {}21e,e est-elle une base ?

Remarque :

La famille {}n21e,...,e,e avec )1,...,0,0(e),...,0,...,1,0(e),0,...,0,1(en21=== constitue la base canonique

de Rn

Propriétés :

{}x est une famille libre 0x¹Û · Toute famille contenant une famille génératrice est génératrice · Toute sous-famille d"une famille libre est libre · Toute famille contenant une famille liée est liée

· Toute famille

{}p21v,...,v,v dont l"un des vecteurs vi est nul, est liée 4

5. Espace vectoriel de dimension finie

Définitions :

· Soit {}IiixÎ une famille S d"éléments de E. On appelle cardinal de S le nombre d"éléments de S

· E est un ev de dimension finie si E admet une famille génératrice de cardinal fini.

Théorème :

Toutes les bases d"un même ev E ont le même cardinal. Ce nombre commun est appelé la dimension

de E. On note dimE

Corollaire :

Dans un ev de dimension n, on a :

- Toute famille libre a au plus n éléments - Toute famille génératrice a au moins n éléments

Remarque : si dimE = n, pour montrer qu"une famille de n éléments est une base de E, il suffit de

montrer qu"elle est libre ou bien génératrice.

Exercice 5 :

Dans R

3, soit e1= (1,0,0), e2= (1,0,1) et e3= (0,1,2)

Montrer que

{}321e,e,e est une base de R3

Théorème de la base incomplète :

Soit E un ev de dimension finie et L une famille libre de E. Alors il existe une base B de cardinal fini

qui contient L.

6. Caractérisation des sev de dimension finie

Proposition :

Soit E un K-ev de dimension n et F un sev de E :

EdimFdim£

EFEdimFdim=Û=

6.1. Coordonnées d"un vecteur

Définition :

Soit E un K-ev de dimension n et

{}n1x,...,xB= une base de E (c"est-à-dire ExÎ", x s"écrit de manière unique =l= n 1i iixx), les scalaires l1, ...,ln sont appelés les coordonnées de x dans la base B. 5

6.2. Rang d"une famille de vecteurs. Sous-espaces engendrés

Définition :

Soit {}p1x,...,xG= Le sev F des combinaisons linéaires des vecteurs x

1, ..., xp est appelé sous-espace engendré par G et

se note : {}p1x,...,xVectVectGF== =p 1ip p1iiR)λ,...,(λ avec xλx/ExF Remarque : {}{}p1p1x,...,xx,...,xVectFÛ= est une famille génératrice de F

Définition :

La dimension de F s"appelle le rang de la famille G : dimF = rgG

Propriétés : Soit {}p1x,...,xG=

prgG£

Û=prgG G est libre

· On ne change pas le rang d"une famille de vecteurs : - en ajoutant à l"un d"eux une combinaison linéaire des autres - en multipliant l"un d"eux par un scalaire non nul - en changeant l"ordre des vecteurs

6.3. Détermination du rang d"une famille de vecteurs

Théorème :

Soit E un K-ev de dimension finie n et

{}n1e,...,eB= une base de E. Si {}p1x,...,x est une famille d"éléments de E (np£) telle que les xi s"écrivent ∑ =a= n 1j ji,jiex avec

0i,i¹a et 0i,j=a pour j < i, alors {}p1x,...,x est libre.

Application : Méthode des zéros échelonnés

Soit E un ev de dimension finie n et

{}n1e,...,eB= une base de E

Pour déterminer le rang d"une famille

{}p1x,...,xG= avec np£ :

1) On écrit sur p colonnes et n lignes les vecteurs x

1,...,xp dans la base B

2) En utilisant les propriétés relatives au rang d"une famille de vecteurs, on se ramène à la disposition

du théorème précédent. 6

Exercice 6 :

Déterminer le rang de la famille

{}321a,a,a avec a1 = (1,4,7), a2 = (2,5,8), a3 = (3,6,1)

6.4. Existence de sous-espaces supplémentaires en dimension finie, bases et sous-espaces

supplémentairesquotesdbs_dbs23.pdfusesText_29
[PDF] polycopié algèbre linéaire epfl

[PDF] algèbre linéaire livre pdf

[PDF] livre d'algèbre pdf

[PDF] polynomes exercices corrigés pdf

[PDF] aide-mémoire algèbre

[PDF] algebre exercice

[PDF] algèbre secondaire 1

[PDF] algebre calcul

[PDF] algèbre formules de base

[PDF] l'algèbre linéaire pour les nuls

[PDF] algèbre-trigonométrie afpa

[PDF] test afpa niveau 4 pdf

[PDF] cours de maths seconde s pdf

[PDF] algo mas 1ere livre du prof

[PDF] programme algobox