[PDF] Mécanique Quantique 1 —– CORRIGÉ Séance dexercices 1 : États





Previous PDF Next PDF



Mécanique Quantique III

extenso les corrigés des exercices et probl`emes proposés `a la fin de chaque chapitre de l'ouvrage Mécanique Quantique tomes I et II.



Cours de Mécanique Quantique Avec Exercices corrigés

On savait de plus que ces électrons s'ils sont freinés



Mécanique Quantique 2`eme édition

Exercices dont le degré de difficulté est précisé : F



Mecanique quantique. Cours et exercices corriges

A : La physique quantique en quelques dates. 23. Annexe 1.B : Rappels de mécanique analytique. 32. Chapitre 2. Équation d'onde de Schrödinger.



Mécanique Quantique 1 —– CORRIGÉ Séance dexercices 1 : États

Mécanique Quantique 1 —– CORRIGÉ. La première partie de ce document donne Puisque la norme de la fonction d'onde vaut 1 on trouve que A = ?2/L et donc.



Travaux dirigés

corrigés. - C. Cohen-Tannoudji B. Diu



polycopié de cours - matière: mécanique quantique ii

? Christophe Texier Mécanique quantique : Cours et exercices corrigés



Mécanique quantique - 3e édition

2 mars 2022 Cours et exercices corrigés ... A.2 Unités en dehors du Système International ... La mécanique quantique constitue la base de toutes les ...



PHQ434 : Mécanique quantique II

30 mai 2018 Le cours Mécanique quantique II (PHQ430) est le deuxième de l'axe « mécanique ... L'objet de cet exercice est de démontrer la formule de ...





Mécanique quantique 2 : Cours-Résumé-Exercices - F2School

Mécanique quantique 2 : Cours - Résumé - TD corrigés - Exercices corrigés - Examens corrigés Le rôle de la mécanique quantique est de décrire le



Mécanique Quantique 2 Exercices Corrigés SMP S5 PDF

Examens Corrigés Exercices et TD Mécanique Quantique 2 SMP S5 Télécharger format PDF Exercices et TD Corrigés problème



Exercices corrigés Mécanique Quantique II SMP Semestre S5

PDF 1: TD et Exercices corrigés de Mécanique Quantique II SMP Semestre S5 ??Télécharger PDF 1?? PDF 2: TD et Exercices corrigés de 



[PDF] Cours de Mécanique Quantique Avec Exercices corrigés

1– Quelles sont les hypothèses de base de De Broglie pour décrire de façon ondulatoire une particule massique ? Solution De Broglie fait deux hypothèses très 



[PDF] Mécanique Quantique III - De Boeck Supérieur

extenso les corrigés des exercices et probl`emes proposés `a la fin de chaque chapitre de l'ouvrage Mécanique Quantique tomes I et II



[PDF] Mecanique quantique Cours et exercices corriges - Numilog

Introduction 1 1 1 Qu'est-ce que la mécanique quantique ? 1 1 2 Brèves considérations historiques 2 1 3 La structure des théories physiques



Mécanique quantique 2 - Exercices corrigés 7 pdf - ALLO ACADEMY

Mécanique quantique 2 Physique Quantique Cours Résumé Exercices corrigés Examens corrigés Travaux dirigés td Contrôle Devoirs pdf



[PDF] Travaux dirigés de mécanique quantique – L2 ; 2019

2 – Les échecs de la physique classiques 1 Rayonnement du corps noir a) On considère la loi de déplacement de Wien et on étudie un corps noir maintenu à la 



EXERCICES CORRIGES (TD) DE MÉCANIQUE QUANTIQUE filière

EXERCICES CORRIGES (TD) DE MODULE MÉCANIQUE QUANTIQUE filière SMP S4 PDF Série N°2 Exercices corrigés Mécanique quantique 1 SMP S4 PDF



Mécanique Quantique Exercices Examens Corrigés PDF - eBoikcom

Télécharger gratuitement TD QCM exercices et examens corrigés de Mécanique Quantique PDF S4 Bachelor / Licence Physique SMP (2ème année L2)

:
École polytechnique de Bruxelles PHYSH301/2016-2017

Mécanique Quantique 1 -- CORRIGÉ

La première partie de ce document donne la correction détaillée de la séance d"exercice 1 sur les

états liés du puits carré. La deuxième partie de ce document propose un exercice similaire mais sur

l"oscillateur harmonique. Ceci n"a pas été vu en classe, mais est lié à la matière du cours.

Séance d"exercices 1: États liés du puits carré.

PUITS CARRÉ INFINI EN 1 DIMENSION

Exercice a

Notez d"abord que le puits étant infini, il n"admet que des états liés!

À l"extérieur du puits, le potentiel étant infini, la fonction d"onde est nulle. Comme la fonction d"onde

doit être continue, on en déduit les conditions limites de la fonction d"onde à l"intérieur du puits :

(0) = (L) = 0 indépendante du temps, en une dimension, qui est donnée par : ~22m@ 2@x

2+V(x)

(x) =E (x) Comme le potentiel est nul, cela devient simplement ~22m@ 2@x

2 (x) =E (x)

ou encore, en posantk=p2mE=~, @2@x

2 (x) =k2 (x):

La solution de cette équation différentielle est donnée par des sinus et cosinus. Ainsi, de façon générale,

la solution est (x) =Asin(kx) +Bcos(kx): En utilisant les conditions limites mentionnées précédemment, on trouve (0) = 0)B= 0 (L) = 0)Asin(kL) = 0)kL=n oùnest un entier positif. Ainsi, (x) =Asin nxL 1 Pour trouver la valeur deAil reste à normaliser la fonction : Z L 0 j (x)j2dx=A2ZL 0 sin nxL dx =A2LZ 1 0 sin2(ny)dyoù on a poséy=x=L =A2LZ 1

01cos(2ny)2

dy =A2Ly2 sin(2ny)4n 1 0 =A2L2 Puisque la norme de la fonction d"onde vaut1on trouve queA=p2=Let donc n(x) =8 :q2 L sin n xL si0xL

0sinon

Notez quenreprésente ici le nombre quantique.

Exercice b

Puisque, de l"exercice précédent on tire quek=p2mE=~etkL=n, on en déduit facilement que les énergies propres du puits infini sont E n=k2~22m=n22~22mL2 . Puisquenest entier, on comprend ici que l"énergie est quantifiée.

Remarquez que si le puits carré est de profondeur finieV0, on a une solution (x)non nulle à l"extérieur

du puits, comme on le verra à l"exercice 3. Dans ce cas là, il y aura également un nombre fini d"états

liés.

PUITS CARRÉ INFINI EN 3 DIMENSIONS

Exercice a

~22m @2@x

2+ +@2@y

2+@2@z

2 +V(3)(x;y;z) (x;y;z) =E (x;y;z) En supposant que la solution a la forme (x;y;z) = 1(x) 2(y) 3(z), on trouve

2(y) 3(z)

~22m@

2 1(x)@x

2+V1(x) 1(x)

+ 1(x) 3(z) ~22m@

2 2(y)@y

2+V2(y) 2(y)

+ 1(x) 2(y) ~22m@

2 3(z)@z

2+V3(z) 3(z)

= 2(y) 3(z)(E1 1(x)) + 1(x) 3(z)(E2 2(y)) + 1(x) 2(y)(E3 3(z)) 2

où on a posé queE=E1+E2+E3. On a donc 3 fois un problème unidimensionnel qui se ramène en

fait au cas étudié à l"exercice1:~22m@ 2@x

2i+Vi(xi)

i(xi) =Ei i(xi) pour i=1,2,3. La solution générale dépend alors de trois nombres quantiquesn1,n2etn3: n1;n2;n3(x;y;z) =r8 L

1L2L3sin

n 1xL 1 sin n 2xL 2 sin n 3xL 3

Exercice b

En se basant également sur le résultat de l"exercice1, on trouve que les énergies liées sont :

E n1;n2;n3=2~22m n21L

21+n22L

22+n23L

23
Remarquez que dans ce cas-là, certaines dégénérescences sont possibles.

Exercice c

Ici, on cherche à calculer le nombre d"états quantiqueN(E0)dans la boîte dont l"énergie est inférieure

à une certaine valeurE0. On cherche doncN(E0)tel que n 21L

21+n22L

22+n23L

232mE0

2~2

On remarque que c"est comme calculer le nombre d"états à l"intérieur d"une sphère de rayon

R=p2mE0~

en sachant que la densité de points estL1L2L3(l"unité de longueur de la coordonnéeiestni=Li).

On approxime le résultat en oubliant que lesnisont entiers et donc il suffit de calculer le volume de

la sphère multiplié par sa densité. Par contre, il ne faut pas oublier que lesnine peuvent être que

positifs et donc on ne prend qu"un huitième du volume de la sphère. :

N(E0)18

volumedensité 18 43
(2mE0)3=2

3~3L1L2L3

43
p30L1L2L3h 3

où à la dernière ligne on a posé que~=h2etp0=p2mE0.p0représente l"impulsion d"une particule

de massemdont l"énergie cinétique estE0.

Ainsi, on remarque dans la dernière équation queL1L2L3représente le volume dans l"espace des

positions alors que4p30=3représente le volume dans l"espace des impulsions.

Dans une volume arbitraire de l"espace des phases, le nombre d"états quantiques indépendants est en

fait donné par

Nxyzpxpypzh

3 C"est comme si chaque état se trouvait dans une petit boîte de côtéh.

Lorsqu"il s"agit de fermions, cela revient simplement à compter le nombre de particules dans la boîte

jusqu"à une certaine énergie, puisqu"il n"y a qu"une seule particule par niveau (on ne peut pas mettre

plus d"un fermion par petite boîte). Notez également que l"on ne connaît par précisémentxetpà

l"intérieur de la petite boîte. 3

PUITS CARRÉ FINI EN 3 DIMENSIONS

Exercice a

H =E ,

~22mr2+V(r) (r) =E (r) où le laplacien en coordonnées sphérique est r 2=1r 2@@r r2@@r +1r 2

1sin@@

sin@@ +1sin 2@ 2@ 2! ~22mr2@@r r2@@r ~22mr2

1sin@@

sin@@ +1sin 2@ 2@ 2! +V(r)# (r;;) =E (r;;) En multipliant l"équation par2mr2, on peut rendre l"équation séparable : ~2@@r r2@@r ~2

1sin@@

sin@@ +1sin 2@ 2@ 2! + 2mr2V(r)# (r;;) = 2mr2E (r;;) ou encore ~2@@r r2@@r + 2mr2V(r)E# |{z} partie radiale (r;;) =~2

1sin@@

sin@@ +1sin 2@ 2@ 2! |{z} partie angulaire (r;;)

Exercice b

[energie] =[p2][2m]=[(~=longueur)2][2m]=~22ma2 où on utilise le fait quexp~pour trouver que l"unité depest celle de~=longueur. Notez qu"on veut rendrerégalement sans dimension. Pour ceci on définit une variabler0=r=aqui est sans dimension. Alors, @@r

0=a@@r

et@@r

0r02@@r

0=@@r r2@@r ~2@@r 0 r 02@@r 0 +2ma2r02V(r0)E# (r0;;) =~2

1sin@@

sin@@ +1sin 2@ 2@ 2! (r0;;) ou encore (en renommant r"=r) @@r r2@@r +2ma2~ 2 r

2V(r)E#

|{z} partie radiale (r;;) =

1sin@@

sin@@ +1sin 2@ 2@ 2! |{z} partie angulaire (r;;) @@r r2@@r +r2V(r)E# |{z} partie radiale (r;;) =

1sin@@

sin@@ +1sin 2@ 2@ 2! |{z} partie angulaire (r;;) 4

Exercice c

Posons (r;;) =r1ul(r)Yml(

@@r r2@@r +r2V(r)E# r

1ul(r)Yml(

1sin@@

sin@@ +1sin 2@ 2@ 2! r

1ul(r)Yml(

ou encore ru l(r)" @@r r2@@r +r2V(r)E# r

1ul(r) =1Y

ml(

1sin@@

sin@@ +1sin 2@ 2@ 2! Y ml( On remarque que la partie gauche de l"équation ne dépend que deralors que la dépendance de

la partie droite de l"équation est uniquement angulaire. Cela signifie donc que chacun des côté de

l"équation est égal à une constante. On choisi cette constante comme étantl(l+ 1). Bien sûr, ce

choix n"est pas arbitraire. Il vient du fait que l"équation

1sin@@

sin@@ +1sin 2@ 2@ 2! Y ml( ) =l(l+ 1)Yml( où

1sin@@

sin@@ +1sin 2@ 2@ 2! =L2 est bien connue et ses solutions sont les harmoniques sphériquesYlmoùlest le nombre quantique

azimutal etmle nombre quantique magnétique. Rappelez-vous qu"il y a une solution différente pour

chaque valeur demetl. Revenons maintenant à l"équation radiale qui devient ru l(r)" @@r r2@@r +r2V(r)E# r

1ul(r) =l(l+ 1)

@@r r2@@r u l(r)r +r2V(r)Eul(r)r =ul(r)r l(l+ 1) @@r r@@r ul(r)ul(r) +r2V(r)Eul(r)r =ul(r)r l(l+ 1) r@2@r

2ul(r) +rV(r)Eul(r) =ul(r)r

l(l+ 1) @2@r

2+l(l+ 1)r

2+V(r)!

u l(r) =E ul(r) Pour l"ondes, on al= 0et donc l"équation se simplifie en @2@r

2+V(r)!

u

0(r) =E u0(r)

ou encore u000(r)V0u0(r) =Eu0(r)r <1 u000(r) =Eu0(r)r >1 5

Exercice d

Dans ce problème, on cherche les états liés, c"est-à-dire ce qui ont une énergie qui se trouve dans le

puits. On suppose donc queV0< E <0et on pose=pVquotesdbs_dbs42.pdfusesText_42
[PDF] exercices corrigés de diagraphie pdf

[PDF] algorithme exercice corrigé 1ere année

[PDF] phalène du bouleau svt 3eme

[PDF] exercice svt la phalène du bouleau

[PDF] exercice sélection naturelle 3ème

[PDF] tentoxine

[PDF] exercice php en ligne

[PDF] exercices corrigés php debutant pdf

[PDF] exercice corrigé php pdf

[PDF] livre php5 pdf

[PDF] les types de phrases exercices ? imprimer

[PDF] exercices les types de phrases 6ème ? imprimer

[PDF] isomérie z e exercices corrigés pdf

[PDF] exercice représentation de lewis 1ere s

[PDF] puissance et énergie électrique exercices corrigés