[PDF] VARIATIONS DUNE FONCTION Yvan Monka – Académie de





Previous PDF Next PDF



ENSEMBLES DE NOMBRES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Par exemple ?* est l'ensemble des nombres réels privé de 0. 8. Inclusions.



FONCTION DERIVÉE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. Exemples : Vidéo https://youtu.be/9Mann4wOGJA. 1) Soit la fonction f définie sur R par f (x) 



DÉRIVATION (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr On a donc défini sur ? une fonction notée f ' dont l'expression est ... ?k*+T?k.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 2. Propriété : (un) est une suite arithmétique de raison r et de premier terme u0.



MATH 2 MINES 91 Notations Mn(R) désigne lespace vectoriel des

MATH 2 MINES 91. Notations. Mn(R) désigne l'espace vectoriel des matrices carrées d'ordre n `a termes réels ; n est un entier n ? 1.



Partie 1 : Intervalles de ?

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr L'ensemble des nombres réels ? est un intervalle qui peut se noter ] ? ? ; +?[.



PRIMITIVES ET ÉQUATIONS DIFFÉRENTIELLES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 2. 3) Primitive d'une fonction. Exemple : On considère les fonctions suivantes : :???.



Borne Inférieure borne supérieure

1 Rappel sur le vocabulaire de base. Soit A une partie de R et x un élément de R. • On dit que m est un majorant de A (resp. un minorant) dans R si.



VARIATIONS DUNE FONCTION

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Définitions : Une fonction affine est définie sur ? par ( ) = + où et ...



CONTINUITÉ

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr a) Soit la fonction f définie sur R {0} par f (x) = 1 x4 alors f est dérivable sur ??;0.



[PDF] ENSEMBLES DE NOMBRES - maths et tiques

Un nombre entier naturel est un nombre entier qui est positif L'ensemble des nombres entiers naturels est noté ? ?= 0;1;2;3;4



[PDF] Partie 1 : Intervalles de ? - maths et tiques

I ? J 0 1 Page 5 5 sur 6 Yvan Monka – Académie de Strasbourg – www maths-et-tiques - Les nombres de la réunion des deux ensembles sont les nombres qui 



[PDF] Nombres réels

8 nov 2011 · Maths en Ligne Nombres réels Bernard Ycart Multiplication L'ensemble R? (ensemble des réels privé de 0) muni de la multiplica-



[PDF] ellipses-extraitpdf

– la notation x ? E signifie x n'appartient pas `a E Le symbole ? désigne l'ensemble vide qui n'a aucun élément Un ensemble qui ne contient qu'un seul 



[PDF] m2_livre2017-completpdf - Institut de Mathématiques de Toulouse

IUT “A” Paul Sabatier Toulouse 3 DUT Génie Civil Module de Mathématiques MATH´EMATIQUES ´Eléments de calculs pour l'étude des fonctions de plusieurs 



[PDF] Calcul Algébrique

Maths en L?1gne Calcul Algébrique UJF Grenoble Dans cet exemple la quantité à sommer ne dépend pas de l'indice de sommation : celle-



[PDF] Cours complet de mathématiques pures T 1 / par L-B Francoeur

4/ Gallica constitue une base de données dont la BnF est le 5/ Les présentes conditions d'utilisation des contenus de Gallica 9^ = 4*+ 15; d'où



[PDF] Cours danalyse 1 Licence 1er semestre

1 5+3i 3+2i 3 ? 2i 1 (4 + 3i)(3 ? 2i) Exercice 1 5 Calculer sous la forme a + ib avec a b réels les racines carrées des nombres complexes 



[PDF] Chapitre 1 Ensembles et sous-ensembles - Université de Rennes

Il y a des notations réservées pour certains ensembles; par exemple N est l'ensemble des entiers naturels ; Z Q R et C désignent respectivement



[PDF] cours-exo7pdf

4 Nombres complexes et géométrie Densité de Q dans R Cours et exercices de maths exo7 emath Licence Creative Commons – BY-NC-SA – 3 0 FR 

:
VARIATIONS DUNE FONCTION

1 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

VARIATIONS D'UNE FONCTION

Tout le cours sur les variations en vidéo : https://youtu.be/i8aYSIidNlk Tout le cours sur les fonctions affines en vidéo : https://youtu.be/n5_pRx4ozIg Partie 1 : Fonctions croissantes et fonctions décroissantes

1. Définitions

On a représenté ci-dessous dans un repère la fonction définie par =5- Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite :

Sur l'intervalle [0;2,5], on

monte, on dit que la fonction est croissante.

Sur l'intervalle [2,5;5], on

descend, on dit que la fonction est décroissante. est décroissante sur 2,5;5

Si augmente (3<4),

alors () diminue ((3)>(4)). est croissante sur 0;2,5

Si augmente (1<2),

alors ()augmente ((1)<(2)).

2 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Définitions : Sur un intervalle ,

- une fonction est croissante, - une fonction est décroissante, si < alors . si < alors

Remarques :

• Pour une fonction constante : on a toujours • Dire que est monotone signifie que est soit croissante, soit décroissante. • On dit qu'une fonction croissante conserve l'ordre et qu'une fonction décroissante renverse l'ordre. Exercice : Déterminer les variations d'une fonction

Vidéo https://youtu.be/zHYaPOWi4Iw

Vidéo https://youtu.be/__KaMRG51Ts

2. Maximum et minimum

Exemple : On reprend la fonction définie dans l'exemple de la partie 1.

Sur l'intervalle [0;5], on a :

2,5 =6,25. On dit que 6,25 est le maximum de la fonction . Ce maximum est atteint en 2,5.

3 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Définitions : Sur un intervalle ,

- une fonction admet un maximum en , si pour tout , - une fonction admet un minimum en , si pour tout ,

Remarque : Un minimum ou un maximum

s'appelle un extremum.

TP avec Python :

Approcher un extremum par la méthode du balayage

3. Tableau de variations

Un tableau de variations résume les variations d'une fonction en faisant apparaître les intervalles où elle est monotone. Méthode : Déterminer graphiquement les variations d'une fonction et dresser le tableau de variations

Vidéo https://youtu.be/yGqqoBMq8Fw

On considère la représentation graphique la fonction :

4 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr a) Sur quel intervalle la fonction est-elle définie ? b) Donner les variations de la fonction. c) Donner les extremums de la fonction en précisant où ils sont atteints. d) Résumer les résultats précédents dans un tableau de variations.

Correction

a) La fonction est définie sur [-5;7]. b) La fonction est croissante sur les intervalles [-4;0] et [5;7]. Elle est décroissante sur les intervalles [-5;-4] et [0;5]. c) Le maximum de est 3,5. Il est atteint en =0. Le minimum de est -4. Il est atteint en =-4 . d)

Partie 2 : Cas des fonctions affines

1. Définitions

Définitions : Une fonction affine est définie sur ℝ par =+, où et sont deux nombres réels. Lorsque =0, la fonction définie par = est une fonction linéaire.

Exemples :

• Fonction affine : =-+6 • Fonction linéaire :

2. Variations

Propriété : Soit une fonction affine définie sur ℝpar

Si >0, alors est croissante.

Si <0, alors est décroissante.

Si =0, alors est constante.

Démonstration :

Soient et deux nombres réels tels que <.

On sait que < donc ->0.

Le signe de

est le même que celui de .

5 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr - Si >0, alors > 0 soit

Donc est croissante.

- Si =0, alors = 0 soit

Donc est constante.

- Si <0, alors < 0 soit

Donc est décroissante.

Méthode : Déterminer les variations d'une fonction affine

Vidéo https://youtu.be/9x1mMKopdI0

Déterminer les variations des fonctions affines suivante : a) =3+2 b) =7-6 c) ℎ

Correction

1)

=3+2 >0 donc est croissante.

2)

=7-6=-6+7 <0 donc est décroissante.

3) ℎ

=-=-1 <0 donc ℎ est décroissante.

3. Représentation graphique

Propriétés :

- Une fonction affine est représentée par une droite. - Une fonction linéaire est représentée par une droite passant par l'origine du repère. Soit la fonction affine définie par ()=+. s'appelle le coefficient directeur s'appelle l'ordonnée à l'origine. Méthode : Déterminer graphiquement une fonction affine

Vidéo https://youtu.be/OnnrfqztpTY

Vidéo https://youtu.be/fq2sXpbdJQg

Vidéo https://youtu.be/q68CLk2CNik

Déterminer graphiquement l'expression des fonctions et représentées respectivement

par les droites (d) et (d').

6 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Correction

Ce nombre s'appelle le coefficient directeur.

Si on avance de 1 : on monte de .

Ce nombre s'appelle l'ordonnée à l'origine.

- se lit sur l'axe des ordonnées.

Pour (d) : Le coefficient directeur est 2

L'ordonnée à l'origine est -2

L'expression de la fonction est :

=2-2

Pour (d') : Le coefficient directeur est -0,5

L'ordonnée à l'origine est -1

L'expression de la fonction est :

=-0,5-1 Propriété des accroissements : Soit la fonction affine définie sur ℝ par =+ et deux nombres réels distincts et .

Alors : =

Démonstration :

Comme ≠, et on a : =

Remarque : Dans le calcul de ,inverser et n'a pas d'importance.

En effet :

Méthode : Déterminer l'expression d'une fonction affine

Vidéo https://youtu.be/ssA9Sa3yksM

Vidéo https://youtu.be/0jX7iPWCWI4

Déterminer par calcul une expression de la fonction telle que : (-2)=4 et (3)=1.

7 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Correction

est une fonction affine, donc elle s'écrit sous la forme : • Calcul de : On a (-2)=4 et (3)=1, donc d'après la propriété des accroissements :

Donc :

• Calcul de b :

On a par exemple : (3)=1, donc :

×3+=1

+=1 =1+ 9 5 5 5 9 5 • D'où :

Partie 3 : Cas des fonctions de référence

1. Variations de la fonction carré

Vidéo https://youtu.be/B3mM6LYdsF8

Propriété :

La fonction carré est décroissante sur l'intervalle -∞;0 et croissante sur l'intervalle

0;+∞

8 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Démonstration au programme :

Vidéo https://youtu.be/gu2QnY8_9xk

On pose :

- Soit et deux nombres réels quelconques positifs tels que <. Or ->0, ≥0 et ≥0 donc ≥0 ce qui prouve que est croissante sur l'intervalle

0;+∞

- La décroissance sur l'intervalle -∞;0 est prouvée de manière analogue en choisissant et deux nombres réels quelconques négatifs tels que <.

2. Variations de la fonction inverse

Vidéo https://youtu.be/Vl2rlbFF22Y

Propriété :

La fonction inverse est décroissante sur

l'intervalle -∞;0 et décroissante sur l'intervalle

0;+∞

Démonstration au programme :

Vidéo https://youtu.be/cZYWnLA30q0

On pose :

- Soit et deux nombres réels strictement positifs avec <. 0 0'/ 0/ Or >0, >0 et -<0. Donc f est ainsi décroissante sur l'intervalle

0;+∞

- La décroissance sur l'intervalle -∞;0 est prouvée de manière analogue. Propriété : Si et sont deux nombres réels de même signe, on a alors : 1 1 En effet, la fonction inverse étant décroissante, l'ordre est renversé.

9 sur 11

quotesdbs_dbs33.pdfusesText_39
[PDF] ensemble r maths

[PDF] sujet concours bcpst corrigé

[PDF] fernand leger oeuvre

[PDF] biographie de fernand leger

[PDF] affiche de propagande pétain hda

[PDF] fernand leger wikipedia

[PDF] la partie de cartes fernand léger analyse de l'oeuvre

[PDF] la propagande de vichy

[PDF] fernand léger soldats jouant aux cartes 1959

[PDF] ferragus resume chapitre 2

[PDF] corrigé livre maths hyperbole terminale s

[PDF] balzac ferragus chef des dévorants commentaire

[PDF] raccordement circulaire pdf

[PDF] hyperbole 1ere es correction pdf

[PDF] raccordement circulaire double