[PDF] Nombres complexes Calculer les racines carrées





Previous PDF Next PDF



La fonction puissance et la racine n-ième

DERNIÈRE IMPRESSION LE 11 novembre 2017 à 18:29. La fonction puissance et la racine n-ième. Table des matières. 1 Fonction puissance. 2. 1.1 Définition .



Racine nième

Racine nième. Corrigés d'exercices. Page 159 : N°80 82



Nombres complexes

Calculer les racines carrées de 1 i



Synthèse de cours PanaMaths (Terminale S) ? Racine nième

Il existe un unique réel positif noté « n a »



Fonction racine nième (n IN nÃ2)

Fonction racine nième. Page 1 sur 2. Terminale S. – Lycée Desfontaines – Melle. Fonction racine nième (n?IN nÃ2). I. Racine nième.



Racine n-ième de lunité

z = rei? est une racine n-ième de Z = ?ei? si et seulement si : zn = Z. rnein? = ?ei?. ?. { rn = ? n? = ? + 2k?. ?. { r = n. ? ? ? = ? n. +. 2k?.



MATH 104 Groupe A4 Séance du 30 avril 2020 A faire : 1- la fiche 5

30 avr. 2020 calcul des racines carrées des nombres complexes ... Achever le thème 3 : Racines n-ième exercices 9 11



Chapitre3 : Les complexes

Soit Z P C ; une racine n-ième de Z c'est un complexe z P C tel que zn = Z. ‚ Si Z = 0



CM14-Racines n-ièmes Cours de Mathématiques L1 Semestre 1

12 nov. 2016 On appelle racine nième d'un nombre complexe z0 tout nombre complexe z tel que z1 n = z0. On appelle racine nième de l'unité les racines ...



Sylvain Gugger

Racine n-ième d'un nombre complexe. ? 4 Nombres complexes et géométrie. Dans toute cette partie on considère le plan P usuel



[PDF] La fonction puissance et la racine n-ième - Lycée dAdultes

11 nov 2017 · Définition 1 : On appelle fonction puissance d'un réel a positif Définition 2 : On appelle racine n-ieme d'un nombre réel positif x 



[PDF] Racine nième - PanaMaths

1/21 M Lichtenberg Racine nième Corrigés d'exercices Page 159 : N°80 82 84 86 88 89 91 92 94 97 Page 165 : N°130 132 Page 162 : N°105



[PDF] Racine n-ième de lunité - Fun MOOC

z = rei? est une racine n-ième de Z = ?ei? si et seulement si : zn = Z rnein? = ?ei? ? { rn = ? n? = ? + 2k? ? { r = n ? ? ? = ? n + 2k? n 1 / 4



[PDF] TS Fonctions puissances entières Racine n-ième Exponentielle de

Fonctions puissances entières Racine n-ième Exponentielle de base réelle I Fonction puissance n-ième 1°) Définition n est un entier naturel tel que n 



[PDF] TS Exercices sur les fonctions puissances et racines n-ièmes

TS Exercices sur les fonctions puissances et racines n-ièmes 1 Calculer sans utiliser la calculatrice en détaillant les étapes de calcul



[PDF] Fonction racine nième (n?IN nÃ2) - Free

Page 1 sur 2 Terminale S – Lycée Desfontaines – Melle Fonction racine nième (n?IN nÃ2) I Racine nième Soit n un entier naturel supérieur ou égal à 2 



[PDF] Racines n-ièmes dun nombre complexe Interprétation géométrique

Théorème 1 : L'équation complexe zn = Z admet n racines distinctes Définition 3 : Un générateur de Un est appelé racine primitive n-ième de l'unité



[PDF] Racines n-ièmes de lunité - Quentin De Muynck

Exercice 3 : Somme des puissances p-ièmes des racines n-ièmes de 1 partie imaginaire de la première racine n-ième de l'unité (faire un dessin) :



Fonction racine n-ième - Résumé de cours 2 - AlloSchool

19 déc 2022 · Fonction racine n-ième - Résumé de cours 2 Dérivation et étude des fonctions Mathématiques 2ème BAC Sciences Physiques BIOF AlloSchool



[PDF] Des racines et des n - APMEP

Problème N°1 La duplication du cube Énoncé typique avec indications de méthodes D'où l'idée de noter la racine nième par une puissance rationnelle

  • Qu'est-ce que la racine nième ?

    En mathématiques, une racine n-ième d'un nombre a est un nombre b tel que bn = a, où n est un entier naturel non nul. Selon que l'on travaille dans l'ensemble des réels positifs, l'ensemble des réels ou l'ensemble des complexes, le nombre de racines n-ièmes d'un nombre peut être 0, 1, 2 ou n.
  • Comment trouver la racine nième d'un nombre ?

    La racine �� -ième d'un nombre est désignée par �� = ? �� ? . Il s'agit de l'inverse de la fonction d'élévation à la puissance �� , et appliquer cette racine revient à déterminer la valeur de �� solution de �� = �� ? . Nous pouvons trouver la racine �� -ième réelle d'un nombre strictement négatif lorsque �� est impair.
  • Comment calculer la racine nième d'un nombre complexe ?

    Si w est un nombre complexe, on appelle racine n -ième de w tout nombre complexe z tel que zn=w z n = w .
  • A l'inverse, la racine carrée d'un nombre est le résultat dont le carré est égal au nombre de départ. Le symbole de la racine carrée est ?. Exemple : la racine carré de 4, qui s'écrit aussi ?4 est égal à 2 car 22, soit 2 x 2 = 4.
Nombres complexes Exo7

Nombres complexes

1 Forme cartésienne, forme polaire

Exercice 1Mettre sous la formea+ib(a;b2R) les nombres :

3+6i34i;1+i2i

2 +3+6i34i;2+5i1i+25i1+i: Écrire sous la formea+ibles nombres complexes suivants : 1.

Nombre de module 2 et d"ar gumentp=3.

2.

Nombre de module 3 et d"ar gumentp=8.

Calculer le module et l"argument deu=p6ip2

2 etv=1i. En déduire le module et l"argument dew=uv Déterminer le module et l"argument des nombres complexes : e eiaeteiq+e2iq: Exercice 5Calculer les racines carrées de 1;i;3+4i;86i;et 7+24i. 1.

Calculer les racines carrées de

1+ip2 . En déduire les valeurs de cos(p=8)et sin(p=8). 2.

Calculer les v aleursde cos (p=12)et sin(p=12).

1

Résoudre dansCles équations suivantes :

z

2+z+1=0 ;z2(1+2i)z+i1=0 ;z2p3zi=0 ;

z

2(514i)z2(5i+12) =0 ;z2(3+4i)z1+5i=0 ; 4z22z+1=0 ;

z

4+10z2+169=0 ;z4+2z2+4=0:

Exercice 8Calculer la sommeSn=1+z+z2++zn.

1.

Résoudre z3=1 et montrer que les racines s"écrivent 1,j,j2. Calculer 1+j+j2et en déduire les racines

de 1+z+z2=0. 2.

Résoudre zn=1 et montrer que les racines s"écrivent 1;e;:::;en1. En déduire les racines de 1+z+z2+

+zn1=0. Calculer, pourp2N, 1+ep+e2p++e(n1)p.

Trouver les racines cubiques de 22iet de 11+2i.

1. Soient z1,z2,z3trois nombres complexes distincts ayant le même cube.

Exprimerz2etz3en fonction dez1.

2. Donner ,sous forme polaire, les solutions dans Cde : z

6+(7i)z388i=0:

(Indication : poserZ=z3; calculer(9+i)2)

4 Géométrie

Exercice 12Déterminer l"ensemble des nombres complexesztels que : 1. z3z5 =1; 2. z3z5 =p2 2 Montrer que pouru;v2C, on aju+vj2+juvj2=2(juj2+jvj2):Donner une interprétation géométrique.

Soit(A0;A1;A2;A3;A4)un pentagone régulier. On noteOson centre et on choisit un repère orthonormé

(O;!u;!v)avec!u=!OA0, qui nous permet d"identifier le plan avec l"ensemble des nombres complexesC.A0 A 3 A 4A 1 A 2 O

1i1.Donner lesaffixesw0;:::;w4despointsA0;:::;A4. Montrerquewk=w1kpourk2f0;1;2;3;4g. Montrer

que 1+w1+w21+w31+w41=0. 2.

En déduire que cos (2p5

)est l"une des solutions de l"équation 4z2+2z1=0. En déduire la valeur de cos(2p5 3. On considère le point Bd"affixe1. Calculer la longueurBA2en fonction de sinp10 puis dep5 (on remarquera que sin p10 =cos2p5 4.

On cons idèrele point Id"affixei2

, le cercleCde centreIde rayon12 et enfin le pointJd"intersection de Cavec la demi-droite[BI). Calculer la longueurBIpuis la longueurBJ.

5.Application:Dessiner un pentagone régulier à la règle et au compas. Expliquer.

5 Trigonométrie

Exercice 15Soitzun nombre complexe de moduler, d"argumentq, et soitzson conjugué. Calculer(z+z)(z2+z

2):::(zn+z

n)en fonction deretq. En utilisant les nombres complexes, calculer cos5qet sin5qen fonction de cosqet sinq.

Exercice 17SoitZ[i] =fa+ib;a;b2Zg.

1. Montrer que si aetbsont dansZ[i]alorsa+betable sont aussi. 2.

T rouverles élements in versiblesde Z[i], c"est-à-dire les élémentsa2Z[i]tels qu"il existeb2Z[i]avec

ab=1. 3. Vérifier que quel que soit w2Cil existea2Z[i]tel quejwaj<1. 4.

Montrer qu"il e xistesur Z[i]une division euclidienne, c"est-à-dire que, quels que soientaetbdansZ[i]

il existeqetrdansZ[i]vérifiant : a=bq+ravecjrj2¯z2¯z2=z1¯z2jz2j2.Indication pourl"exer cice2 NIl faut bien connaître ses formules trigonométriques. En particulier si l"on connait cos(2q)ou sin(2q)on sait

calculer cosqet sinq.Indication pourl"exer cice3 NPassez à la forme trigonométrique. Souvenez-vous des formules sur les produits de puissances :

e

iaeib=ei(a+b)eteia=eib=ei(ab):Indication pourl"exer cice4 NPour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

.Indication pourl"exer cice5 NPourz=a+ibon cherchew=a+ibtel que(a+ib)2=a+ib. Développez et indentifiez. Utilisez aussi que

jwj2=jzj.Indication pourl"exer cice6 NIl s"agit de calculer les racines carrées de 1+ip2 =eip4

de deux façons différentes.Indication pourl"exer cice7 NPour les équation du typeaz4+bz2+c=0, poserZ=z2.Indication pourl"exer cice8 NCalculer(1z)Sn.Indication pourl"exer cice12 NLe premier ensemble est une droite le second est un cercle.

Indication pour

l"exer cice

13 NPour l"interprétation géométrique cherchez le parallélogramme.

Indication pour

l"exer cice

15 NUtiliser la formule d"Euler pour faire apparaître des cosinus.

Indication pour

l"exer cice

16 NAppliquer deux fois la formule de Moivre en remarquantei5q= (eiq)5.5

Correction del"exer cice1 NRemarquons d"abord que pourz2C,zz=jzj2est un nombre réel, ce qui fait qu"en multipliant le dénominateur

par son conjugué nous obtenons un nombre réel. =35 +65
i:

Calculons

1+i2i=(1+i)(2+i)5

=1+3i5 et 1+i2i 2 =1+3i5 2 =8+6i25 =825 +625
i: Donc 1+i2i 2 +3+6i34i=825 +625
i35 +65
i=2325 +3625
i:

Soitz=2+5i1i. Calculonsz+z, nous savons déjà que c"est un nombre réel, plus précisément :z=32

+72
iet doncz+z=3.Correction del"exer cice2 N1.z1=2eip3 =2(cosp3 +isinp3 ) =2(12 +ip3 2 ) =1+ip3.

2.z2=3eip8

=3cosp8

3isinp8

=3p2+p2 2

3ip2p2

2 Il nous reste à expliquer comment nous avons calculé cos p8 et sinp8 : posonsq=p8 , alors 2q=p4 et donc cos(2q)=p2 2 =sin(2q). Mais cos(2q)=2cos2q1. Donc cos2q=cos(2q)+12 =14 (2+p2). Et ensuite sin

2q=1cos2q=14

(2p2). Comme 06q=p8 6p2 , cosqet sinqsont des nombres positifs. Donc cos p8 =12 q2+p2;sinp8 =12 q2p2:Correction del"exer cice3 NNous avons u=p6p2i2 =p2 p3 2 i2 =p2 cosp6 isinp6 =p2eip6 puis v=1i=p2eip4

Il ne reste plus qu"à calculer le quotient :

uv =p2eip6p2eip4 =eip6 +ip4 =eip12 :Correction del"exer cice4 ND"après la formule de Moivre poureianous avons : e eia=ecosa+isina=ecosaeisina: Orecosa>0 donc l"écriture précédente est bien de la forme "module-argument". 6

De façon générale pour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

. En effet e iu+eiv=eiu+v2 eiuv2 +eiuv2 =eiu+v2

2cosuv2

=2cosuv2 eiu+v2 Ce qui est proche de l"écriture en coordonées polaires.

Pour le cas qui nous concerne :

z=eiq+e2iq=e3iq2 h eiq2 +eiq2 i =2cosq2 e3iq2 Attention le module dans une décomposion en forme polaire doit être positif ! Donc si cos q2 >0 alors 2cosq2 est le module dezet 3q=2 est son argument ; par contre si cosq2 <0 le module est 2jcosq2 jet l"argument

3q=2+p(le+pcompense le changement de signe careip=1).Correction del"exer cice5 NRacines carrées.Soitz=a+ibun nombre complexe aveca;b2R; nous cherchons les complexesw2Ctels

quew2=z. Écrivonsw=a+ib. Nous raisonnons par équivalence : w

2=z,(a+ib)2=a+ib

,a2b2+2iab=a+ib Soit en identifiant les parties réelles entre elles ainsi que les parties imaginaires : a2b2=a 2ab=b Sans changer l"équivalence nous rajoutons la conditionjwj2=jzj. 8 :a

2+b2=pa

2+b2 a 2b2=a 2ab=b Par somme et différence des deux premières lignes : 8 :a

2=a+pa

2+b22 b

2=a+pa

2+b22 2ab=b ,8 >:a=qa+pa 2+b22 b=qa+pa 2+b22 abest du même signe queb Cela donne deux couples(a;b)de solutions et donc deux racines carrées (opposées)w=a+ibdez. 7 En pratique on répète facilement ce raisonnement, par exemple pourz=86i, w

2=z,(a+ib)2=86i

,a2b2+2iab=86i a2b2=8 2ab=6 ,8 :a

2+b2=p8

2+(6)2=10 le module dez

a 2b2=8 2ab=6 ,8 :2a2=18 b 2=1 2ab=6 ,8 :a=p9=3 b=1 aetbde signes opposés ,8 :a=3 etb=1 ou a=3 etb= +1

Les racines dez=86isont doncw1=3ietw2=w1=3+i.

Pour les autres :

Les racines carrées de 1 sont : +1 et1.

Les racines carrées de isont :p2

2 (1+i)etp2 2 (1+i).

Les racines carrées de 3 +4isont : 2+iet2i.

Les racines carrées de 7 +24isont : 4+3iet43i.Correction del"exer cice6 NPar la méthode usuelle nous calculons les racines carréesw;wdez=1+ip2

, nous obtenons w=sp2+12 p2 +isp212 p2 qui peut aussi s"écrire : w=12 q2+p2+i12 q2p2:

Mais nous remarquons quezs"écrit également

z=eip4 eteip8 vérifie eip8

2=e2ip8

=eip4

Cela signifie queeip8

est une racine carrée dez, donceip8 =cosp8 +isinp8 est égal àwouw. Comme cosp8 >0 alorseip8 =wet donc par identification des parties réelles et imaginaires : cos p8 =12 q2+p2 et sin p8 =12 q2p2: 8

Correction del"exer cice7 NÉquations du second degré.La méthode génerale pour résoudre les équations du second degréaz2+bz+c=0

(aveca;b;c2Ceta6=0) est la suivante : soitD=b24acle discriminant complexe etdune racine carrée de

D(d2=D) alors les solutions sont :

z

1=b+d2aetz2=bd2a:

Dans le cas où les coefficients sont réels, on retrouve la méthode bien connue. Le seul travail dans le cas

complexe est de calculer une racineddeD. Exemple : pourz2p3zi=0,D=3+4i, dont une racine carrée estd=2+i, les solutions sont donc : z

1=p3+2+i2

etz2=p32i2

Les solutions des autres équations sont :

L "équationz2+z+1=0 a pour solutions :12

(1+ip3),12 (1ip3). L "équationz2(1+2i)z+i1=0 a pour solutions : 1+i,i.

L "équationz2p3zi=0 a pour solutions :12

(2p3+i),12 (2p3i) L "équationz2(514i)z2(5i+12) =0 a pour solutions : 512i,2i. L "équationz2(3+4i)z1+5i=0 a pour solutions : 2+3i, 1+i.

L "équation4 z22z+1=0 a pour solutions :14

(1+ip3),14 (1ip3). L "équationz4+10z2+169=0 a pour solutions : 2+3i,23i, 23i,2+3i.

L "équationz4+2z2+4=0 a pour solutions :p2

2 (1+ip3),p2 2 (1ip3),p2 2 (1+ip3),p2 2 (1ip3).Correction del"exer cice8 NS n=1+z+z2++zn=nå k=0zk:quotesdbs_dbs33.pdfusesText_39
[PDF] racine nième d'un nombre réel positif

[PDF] législation du travail au maroc

[PDF] législation du travail résumé

[PDF] législation du travail maroc pdf

[PDF] legislation du travail pdf

[PDF] legislation de travail maroc pdf ofppt

[PDF] cours législation du travail maroc pdf

[PDF] résumé de législation de travail ofppt

[PDF] transistor ? effet de champ schéma équivalent

[PDF] application des transistor a effets de champs

[PDF] transistor a effet de champs exercices corrigés

[PDF] circulaire mission prof principal

[PDF] transistor a effet de champs jfet exercices corrigés

[PDF] cours dintroduction ? lanthropologie pdf

[PDF] oms fondateurs