[PDF] Arithmétique dans Z Exercice 4. Démontrer que





Previous PDF Next PDF





MULTIPLES DIVISEURS

https://www.maths-et-tiques.fr/telech/19NombreEntierM.pdf



Exercices sur les nombres premiers EXERCICE 1 : Démontrer que

3 et. 8 sont premiers entre eux et divisent p2 − 1 donc p2 − 1 est divisible par 24. EXERCICE 3 : p > 3 est un nombre premier. 1. Quels sont les restes 



Représentation décimal binaire

https://dms.umontreal.ca/~broera/MAT1500Slides_191112.pdf



Nom : Classe Les caractères de divisibilité. Entraînement Savoir Nom : Classe Les caractères de divisibilité. Entraînement Savoir

Souligne les nombres divisibles par 8. 26 774. 70 800. 83 972. 58 576. 13 000. 9 Le plus grand nombre divisible par 8 : Le plus grand nombre divisible par 5 :



PEI Math 1 Module 2 / Feuille nOl/page l PEI Math 1 Module 2 / Feuille nOl/page l

nombre pair n est donc multiple de 8. Le produit de deux nombres pairs consécutifs est donc toujours multiple de 8 (ou divisible par 8). L'affirmation 3 est ...



Liste de critères de divisibilité - Wikipédia

27 mars 2006 Un nombre est divisible par 2 s'il se termine par un chiffre pair. Exemple. 15679205738 est divisible par 2 car il se termine par 8 qui est un ...



Correction exercices Spécialité maths Démontrer que si n est un

divisible par 8. Si p est impair alors p 1 est pair et c'est gagné. Quels sont les restes possibles dans la division du cube d'un nombre entier naturel par 7 ?



Untitled

8 : les seuls nombres divisibles par 8 seraient 80 et 88 là encore à rejeter. (b) Comme ce nombre se termine par un 5



Arithmétique dans Z

Démontrer que le nombre 7n +1 est divisible par 8 si n est impair; dans le cas n pair donner le reste de sa division par 8. Indication ?. Correction ?.



n°4 page 36 a) 7 est un diviseur de 14. b) 45 est un multiple de 15. c

d) 0 est divisible par tout nombre entier non nul car 0 = 0×n pour tout nombre entier n. b) 112 = 14×8 = 7×2×8 = 7×16 donc 112 est divisible par 7.



Comment-savoir-si-un-nombre-est-divisible-par-2-3-4-5-9-ou-10_.pdf

Un nombre entier est divisible par 2 : ? Quand son chiffre des unités est. 02



PEI Math 1 Module 2 / Feuille nOl/page l

Affirmation 2 : Si un nombre est multiple de 6 et de 9 Affirmation 3 : Le produit de deux nombres pairs consécutifs est divisible par 8.



Feuille 5 : Arithmétique

Exercice 13 Démontrer que le nombre 7n + 1 est divisible par 8 si n est impair ; dans le cas n pair donner le reste de sa division par 8.





Arithmétique dans Z 1 Divisibilité division euclidienne

reste de la division du nombre 96842 par chacun des nombres 256 et 375. Exercice 4 Démontrer que le nombre 7n + 1 est divisible par 8 si n est impair ; dans 



Untitled

1 mars 2012 4: le nombre formé par les deux chiffres doit être divisible par 4: seul 48 ... 8 : les seuls nombres divisibles par 8 seraient 80 et 88 ...



INF1130 SESSION H13 : SOLUTIONS du DEVOIR 2

Hypoth`ese d'induction : supposons que (2n + 1)2 ? 1 est divisible par 8. un nombre pair de bits `a '1' ; et Mn les mauvaises



Arithmétique

2) Si un nombre est divisible par 3 et par 9 alors il est divisible par 27. 8) Dans la division euclidienne de 229 par 12 le quotient est 18 et le ...



Critères de divisibilité et diviseurs - Les Maths à la maison

Pour chacun des nombres suivants indique si les nombres 2 3 5 9 ou 10 sont des diviseurs de ce nombre : a) 5 421 b) 9 540 Exercice 3 : 1) Le nombre 1 248 est-il un multiple de 2 ? 2) Le nombre 1 248 est-il divisble par 7 ? 3) Le nombre 1 248 est-il divisble par 4 ? 4) Le nombre 3 420 est-il divisible par 2 ? 5) 3 est-il un diviseur du



Les règles de divisibilité d’un nombre - Le petit roi

Un nombre est divisible par 2 si o les deux derniers chiffres forment un nombre divisible par 4 o la somme des chiffres est divisible par 3 o le dernier chiffre est 0 ou 5 o le dernier chiffre est 0 2 4 6 ou 8 Un nombre est divisible par 3 si o le dernier chiffre est 0 ou 5 o le dernier chiffre est 0 2 4 6 ou 8



Leçon - Critères de divisibilité - ac-lillefr

Ø Un nombre est divisible par 4 si le nombre formé par son chiffre des dizaines et son chiffre des unités est divisible par 4 Pour savoir si 873 136 est divisible par 4 on regarde le nombre formé par son chiffre des dizaines et son chiffre des unités 36 est divisible par 4 donc 873 136 est divisible par 4



Fiche n°3 COMPRENDRE ET UTILISER LA DIVISIBILITE DES ENTIERS

Les nombres pairs sont 3 564 4 850 et 8 730 car ils se terminent par 0 2 4 6 ou 8 Parmi ces nombres ceux qui sont divisibles par 5 sont 4 850 et 8 730 Comme 4+8+5+0=17 et 8+7+3+0=18 4 850 n’est pas divisible par 9 mais 8 730 est aussi divisible par 9 8 730 est donc le seul nombre pair divisible par 5 et par 9



Searches related to nombre divisible par 8 PDF

Règles de Divisibilité par 4 7 et 8 (A) Encerclez les nombres qui sont divisibles par les nombres spécifiés Divisible par 4? 879 532 329 137 297 385 123 255 264 748 656 776 664 899 602 133 269 460 764 746 843 886 508 230 Divisible par 7? 801 790 616 922 562 444 946 833 332 217 549 428 491 358 547 136 397 168 875 487 722 354 698 562

Quelle est la règle de divisibilité d’un nombre ?

Les règles de divisibilité d’un nombre Coche la bonne réponse : Un nombre est divisible par 2 si o le dernier chiffre est 0, 2, 4, 6, ou 8. o la somme des chiffres est divisible par 3. o les deux derniers chiffres forment un nombre divisible par 4. o le dernier chiffre est 0 ou 5.

Comment savoir si 0 est divisible par tous les nombres ?

0 est divisible par tous les nombres. Critère de divisibilité par 2 : si le nombre est pair. Cela signifie que le chiffre des unités doit être pair, c’est-à-dire 0, 2, 4, 6 ou 8 (par exemple, le chiffre des unités de 48 est 8). Exemple : 48 est une chiffre pair. Il est donc un multiple de 2.

Quels sont les critères de divisibilité et diviseurs ?

Critères de divisibilité et diviseurs Exercice 1 : Complètele tableau ci-dessous en indiquant si les nombres donnés sont divisibles par 2 ou 3 ou 5 ou 9 ou 10 1 2503 486 349 8 784 Divisible par 2 Divisible par 3 Divisible par 5 Divisible par 9 Divisible par 10 Exercice 2 :

Comment savoir si un nombre est un multiple de 8 ?

? Technique 1 : un nombre est un multiple de 8 si l’on obtient un nombre entier après trois divisions par 2. Les multiples de 2 sont forcément pairs, et donc ceux de 8 aussi. Exemple : 832 est un multiple de 8. 832 divisé par 8 est égal à 104. Exemple 2 : 666 n’est pas un multiple de 8.

Exo7 Arithmétique dansZ1 Divisibilité, division euclidienne

Exercice 1Sachant que l"on a 96842=256375+842, déterminer, sans faire la division, le reste de la division du nombre

96842 par chacun des nombres 256 et 375.

Montrer que8n2N:

n(n+1)(n+2)(n+3)est divisible par 24; n(n+1)(n+2)(n+3)(n+4)est divisible par 120:

Montrer que sinest un entier naturel somme de deux carrés d"entiers alors le reste de la division euclidienne

denpar 4 n"est jamais égal à 3.

Démontrer que le nombre 7

n+1 est divisible par 8 sinest impair ; dans le casnpair, donner le reste de sa division par 8. Trouver le reste de la division par 13 du nombre 100 1000.
1. Montrer que le reste de la di visioneuclidienne par 8 du carré de tout nombre impair est 1. 2. Montrer de même que tout nombre pair vérifie x2=0(mod 8)oux2=4(mod 8): 3. Soient a;b;ctroisentiersimpairs. Déterminerlerestemodulo8dea2+b2+c2etceluide2(ab+bc+ca): 4. En déduire que ces deux nombres ne sont pas des carrés puis que ab+bc+canon plus.

2 pgcd, ppcm, algorithme d"Euclide

Exercice 7Calculer le pgcd des nombres suivants :

1.

126, 230.

2.

390, 720, 450.

3.

180, 606, 750.

Déterminer les couples d"entiers naturels de pgcd 18 et de somme 360. De même avec pgcd 18 et produit 6480.

Calculer par l"algorithme d"Euclide : pgcd(18480;9828). En déduire une écriture de 84 comme combinaison

linéaire de 18480 et 9828.

Notonsa=1 111 111 111 etb=123 456 789.

1. Calculer le quotient et le reste de la di visioneuclidienne de aparb. 2.

Calculer p=pgcd(a;b).

3. Déterminer deux entiers relatifs uetvtels queau+bv=p.

Résoudre dansZ: 1665x+1035y=45:

Exercice 12Combien 15! admet-il de diviseurs ?

Démontrer que, siaetbsont des entiers premiers entre eux, il en est de même des entiersa+betab.

Soienta;bdes entiers supérieurs ou égaux à 1. Montrer :

1.(2a1)j(2ab1);

2. 2 p1 premier)ppremier ; 2

3.pgcd (2a1;2b1) =2pgcd(a;b)1.

Soita2Ntel quean+1 soit premier, montrer que9k2N;n=2k:Que penser de la conjecture :8n2N;22n+1 est premier ?

Soitpun nombre premier.

1.

Montrer que 8i2N;0 C ipest divisible parp: 2.

Montrer par récurence que :

8ppremier;8a2N;on aapaest divisible parp:

1.

Montrer par récurrence que 8n2N;8k>1 on a :

2

2n+k1=

22n1
k1Õ i=0(22n+i+1): 2. On pose Fn=22n+1. Montrer que pourm6=n,FnetFmsont premiers entre eux. 3. En déduire qu"il y a une infinité de nombres premiers. SoitXl"ensemble des nombres premiers de la forme 4k+3 aveck2N. 1.

Montrer que Xest non vide.

2. Montrer que le produit de nombres de la forme 4 k+1 est encore de cette forme. 3. On suppose que Xest fini et on l"écrit alorsX=fp1;:::;png. Soita=4p1p2:::pn1. Montrer par l"absurde queaadmet un diviseur premier de la forme 4k+3. 4. Montrer que ceci est impossible et donc que Xest infini.

Indication pourl"exer cice1 NAttention le reste d"une division euclidienne est plus petit que le quotient !

Indication pour

l"exer cice

4 NUtiliser les modulos (ici modulo 8), un entier est divisible par 8 si et seulement si il est équivalent à 0 modulo

8. Ici vous pouvez commencer par calculer 7

n(mod 8).Indication pourl"exer cice5 NIl faut travailler modulo 13, tout d"abord réduire 100 modulo 13. Se souvenir que siab(mod 13)alors

a kbk(mod 13). Enfin calculer ce que cela donne pour les exposantsk=1;2;3;:::en essayant de trouver une règle générale.Indication pourl"exer cice6 N1.Écrire n=2p+1. 2. Écrire n=2pet discuter selon quepest pair ou impair. 3.

Utiliser la première question.

4. P arl"absurde supposer que cela s"écri vecomme un carré, par e xemplea2+b2+c2=n2puis discuter

selon quenest pair ou impair.Indication pourl"exer cice11 NCommencer par simplifier l"équation ! Ensuite trouver une solution particulière(x0;y0)à l"aide de l"algorithme

d"Euclide par exemple. Ensuite trouver un expression pour une solution générale.Indication pourl"exer cice12 NIl ne faut surtout pas chercher à calculer 15!=123415, mais profiter du fait qu"il est déjà

"presque" factorisé.Indication pourl"exer cice13 NRaisonner par l"absurde et utiliser le lemme de Gauss.

Indication pour

l"exer cice

14 NPour 1. utiliser l"égalité

x b1= (x1)(xb1++x+1): Pour 2. raisonner par contraposition et utiliser la question 1. La question 3. est difficile ! Supposera>b. Commencer par montrer que pgcd(2a1;2b1) =pgcd(2a 2 b;2b1) =pgcd(2ab1;2b1). Cela vour permettra de comparer l"agorithme d"Euclide pour le calcul de

pgcd(a;b)avec l"algorithme d"Euclide pour le calcul de pgcd(2a1;2b1).Indication pourl"exer cice15 NRaisonner par contraposition (ou par l"absurde) : supposer quenn"est pas de la forme 2k, alorsnadmet un

facteur irréductiblep>2. Utiliser aussixp+1= (x+1)(1x+x2x3+:::+xp1)avecxbien choisi.Indication pourl"exer cice16 N4

1.Écrire

C ip=p(p1)(p2):::(p(i+1))i! et utiliser le lemme de Gauss ou le lemme d"Euclide. 2.

Raisonner a vecles modulos, c"est-à-dire prouv erapa(modp).Indication pourl"exer cice17 N1.Il f autêtre très soigneux : nest fixé une fois pour toute, la récurrence se fait surk>1.

2.

Utiliser la question précédente a vecm=n+k.

3. P arl"absurde, supposer qu"il y a seulement Nnombres premiers, considérerN+1 nombres du typeFi.

Appliquer le "principe du tiroir" :si vous avez N+1chaussettes rangées dans N tiroirs alors il existe

(au moins) un tiroir contenant (plus de) deux chaussettes.5

Correction del"exer cice1 NLa seule chose à voir est que pour une division euclidienne le reste doit être plus petit que le quotient. Donc les

divisions euclidiennes s"écrivent : 96842=256378+74 et 96842=258375+92.Correction del"exer cice2 NIl suffit de constater que pour 4 nombres consécutifs il y a nécessairement : un multiple de 2, un multiple de

3, un multiple de 4 (distinct du mutliple de 2). Donc le produit de 4 nombres consécutifs est divisible par

234=24.Correction del"exer cice3 NEcriren=p2+q2et étudier le reste de la division euclidienne denpar 4 en distinguant les différents cas de

parité depetq.Correction del"exer cice4 NRaisonnons modulo 8 :

7 1(mod 8):

Donc 7 n+1(1)n+1(mod 8):

Le reste de la division euclidienne de 7

n+1 par 8 est donc(1)n+1 donc Sinest impair alors 7n+1 est

divisible par 8. Et sinest pair 7n+1 n"est pas divisible par 8.Correction del"exer cice5 NIl sagit de calculer 100

1000modulo 13. Tout d"abord 1009(mod 13)donc 100100091000(mod 13). Or

9

2813(mod 13), 9392:93:91(mod 13), Or 9493:99(mod 13), 9594:99:93

(mod 13). Donc 10010009100093:333+1(93)333:91333:99(mod 13).Correction del"exer cice6 N1.Soit nun nombre impair, alors il s"écritn=2p+1 avecp2N. Maintenantn2= (2p+1)2=4p2+4p+

1=4p(p+1)+1. Doncn21(mod 8).

2. Si nest pair alors il existep2Ntel quen=2p. Etn2=4p2. Sipest pair alorsp2est pair et donc n

2=4p2est divisible par 8, doncn20(mod 8). Sipest impair alorsp2est impair et doncn2=4p2

est divisible par 4 mais pas par 8, doncn24(mod 8). 3. Comme aest impair alors d"après la première questiona21(mod 8), et de mêmec21(mod 8), c

21(mod 8). Donca2+b2+c21+1+13(mod 8). Pour l"autre reste, écrivonsa=2p+1 et

b=2q+1,c=2r+1, alors 2ab=2(2p+1)(2q+1) =8pq+4(p+q)+2. Alors 2(ab+bc+ca) =

8pq+8qr+8pr+8(p+q+r)+6, donc 2(ab+bc+ca)6(mod 8).

4. Montrons par l"absurde que le nombre a2+b2+c2n"est pas le carré d"un nombre entier. Supposons qu"il existen2Ntel quea2+b2+c2=n2. Nous savons quea2+b2+c23(mod 8). Sinest impair alorsn21(mod 8)et sinest pair alorsn20(mod 8)oun24(mod 8). Dans tous les casn2

n"est pas congru à 3 modulo 8. Donc il y a une contradiction. La conclusion est que l"hypothèse de

départ est fausse donca2+b2+c2n"est pas un carré. Le même type de raisonnement est valide pour

2(ab+bc+ca).

Pourab+bc+cal"argument est similaire : d"une part 2(ab+bc+ca)6(mod 8)et d"autre part si, par l"absurde, on supposeab+bc+ca=n2alors selon la parité dennous avons 2(ab+bc+ca)2n22

(mod 8)ou à 0(mod 8). Dans les deux cas cela aboutit à une contradiction. Nous avons montrer que

ab+bc+can"est pas un carré. 6

Correction del"exer cice7 NIl s"agit ici d"utiliser la décomposition des nombres en facteurs premiers.

1.

126 =2:32:7 et 230=2:5:23 donc le pgcd de 126 et 230 est 2.

2.

390 =2:3:5:13, 720=24:32:5, 450=2:32:52et donc le pgcd de ces trois nombres est 2:3:5=30.

3.

pgcd (180;606;750) =6.Correction del"exer cice8 NSoienta;bdeux entiers de pgcd 18 et de somme 360. Soita0;b0tel quea=18a0etb=18b0. Alorsa0etb0sont

premiers entre eux, et leur somme est 360=18=20.

Nous pouvons facilement énumérer tous les couples d"entiers naturels(a0;b0)(a06b0) qui vérifient cette

condition, ce sont les couples : (1;19);(3;17);(7;13);(9;11):

Pour obtenir les couples(a;b)recherchés (a6b), il suffit de multiplier les couples précédents par 18 :

(18;342);(54;306);(126;234);(162;198):Correction del"exer cice9 N1.pgcd (18480;9828) =84; 2.

25 18480+(47)9828=84.Correction del"exer cice10 N1.a=9b+10.

2. Calculons le pgcd par l"algorithme d"Euclide. a=9b+10,b=1234567810+9, 10=19+1. Donc le pgcd vaut 1; 3.

Nous reprenons les équations précédentes e npartant de la fin: 1 =109, puis nous remplaçons 9 grâce

à la deuxième équation de l"algorithme d"Euclide: 1=10(b1234567810) =b+1234679

10. Maintenant nous remplaçons 10 grâce à la première équation: 1=b+12345679(a9b) =

12345679a111111112b.Correction del"exer cice11 NEn divisant par 45 (qui est le pgcd de 1665;1035;45) nous obtenons l"équation équivalente :

37x+23y=1(E)

Comme le pgcd de 37 et 23 est 1, alors d"après le théorème de Bézout cette équation(E)a des solutions.

L"algorithme d"Euclide pour le calcul du pgcd de 37 et 23 fourni les coefficients de Bézout: 375+23

(8) =1. Une solution particulière de(E)est donc(x0;y0) = (5;8).

Nous allons maintenant trouver l"expression générale pour les solutions de l"équation(E). Soient(x;y)une

solution de l"équation 37x+23y=1. Comme(x0;y0)est aussi solution, nous avons 37x0+23y0=1. Faisons la différence de ces deux égalités pour obtenir 37(xx0)+23(yy0) =0. Autrement dit

37(xx0) =23(yy0) ()

7

On en déduit que 37j23(yy0), or pgcd(23;37) =1 donc par le lemme de Gauss, 37j(yy0). (C"est ici qu"il

est important d"avoir divisé par 45 dès le début !) Cela nous permet d"écrireyy0=37kpour unk2Z.

Repartant de l"égalité(): nous obtenons 37(xx0) =2337k. Ce qui donnexx0=23k. Donc si (x;y)est solution de(E)alors elle est de la forme :(x;y) = (x023k;y0+37k), aveck2Z.

Réciproquement pour chaquek2Z, si(x;y)est de cette forme alors c"est une solution de(E)(vérifiez-le !).

Conclusion : les solutions sont(523k;8+37k)jk2Z:Correction del"exer cice12 NÉcrivons la décomposition de 15!=1:2:3:4:::15 en facteurs premiers. 15!=211:36:53:72:11:13. Un diviseur

de 15! s"écritd=2a:3b:5g:7d:11e:13havec 06a611, 06b66, 06g63, 06d62, 06e61,

06h61. De plus tout nombredde cette forme est un diviseur de 15!. Le nombre de diviseurs est donc

(11+1)(6+1)(3+1)(2+1)(1+1)(1+1) =4032.Correction del"exer cice13 NSoitaetbdes entiers premiers entre eux. Raisonnons par l"absurde et supposons queabeta+bne sont pas

premiers entre eux. Il existe alorspun nombre premier divisantabeta+b. Par le lemme d"Euclide comme pjabalorspjaoupjb. Par exemple supposons quepja. Commepja+balorspdivise aussi(a+b)a, donc pjb.dne divise pasbcela implique quedetbsont premiers entre eux. D"après le lemme de Gauss, commeddiviseabetdpremier avecbalorsddivisea. Doncpest un facteur premier deaet debce qui est absurde.Correction del"exer cice14 N1.Nous sa vonsque x b1= (x1)(xb1++x+1); pourx=2anous obtenons : 2 ab1= (2a)b1= (2a1)

2a(b1)++2a+1

Donc(2a1)j(2ab1).

2. Montrons la contraposée. Supposons que pne soit pas premier. Doncp=abavec 1b. Nous allons montrer que faire l"algorithme d"Euclide pour le couple(2a1;2b

1)revient à faire l"algorithme d"Euclide pour(a;b). Tout d"abord rappellons la formule qui est à la

base de l"algorithme d"Euclide : pgcd(a;b) =pgcd(ab;b). Appliqué à 2a1 et 2b1 cela donne directement pgcd(2a1;2b1) =pgcd(2a2b;2b1). Mais 2a2b=2b(2ab1)d"où pgcd(2a

1;2b1) =pgcd(2b(2ab1);2b1) =pgcd(2ab1;2b1). La dernière égalité vient du fait 2bet

2 b1 sont premiers entre eux (deux entiers consécutifs sont toujours premiers entre eux). Nous avons montrer : pgcd(2a1;2b1) =pgcd(2ab1;2b1). Cette formule est à mettre en parallèle de pgcd(a;b) =pgcd(ab;b). En itérant cette formule nous obtenons que sia=bq+ralors : pgcd(2a1;2b1) =pgcd(2abq1;2b1) =pgcd(2r1;2b1)à comparer avec pgcd(a;b) =

pgcd(abq;b) =pgcd(r;b). Nous avons notre première étape de l"algorithme d"Euclide. En itérant

l"algorithme d"Euclide pour(a;b), nous nous arêtons au dernier reste non nul: pgcd(a;b) =pgcd(b;r) =

=pgcd(rn;0) =rn. Ce qui va donner pour nous pgcd(2a1;2b1) =pgcd(2b1;2r1) == pgcd(2rn1;201) =2rn1.

Bilan : pgcd(2a1;2b1) =2pgcd(a;b)1.

8quotesdbs_dbs21.pdfusesText_27

[PDF] comment savoir si un nombre est divisible par 12

[PDF] nombre divisible par 7

[PDF] un nombre est divisible par 5 si

[PDF] critère de divisibilité par 25

[PDF] résoudre équation 3 inconnues excel

[PDF] subjonctif imparfait exercices pdf

[PDF] faire causatif exercices

[PDF] exercice subjonctif imparfait espagnol

[PDF] se faire léser

[PDF] exercice sur le subjonctif passé

[PDF] exercice subjonctif plus que parfait

[PDF] il eut été ou il eût été

[PDF] exercice conjugaison présent

[PDF] l'expression du temps exercices corrigés pdf

[PDF] grammaire française exercices corrigés