[PDF] Chapitre 3 Dérivabilité des fonctions réelles





Previous PDF Next PDF



Quel est le domaine de dérivabilité dune fct rationnelle? Comment

Comment dérive-t-on une fonction rationnelle? §. ¦. ¤. ¥. Rappel : Avant de dériver une fonction on précise (ou on détermine) toujours son domaine de 



La fonction rationnelle

D Comment déterminer l'ensemble de définition d'une fraction rationnelle. (comment déterminer le domaine d'une fonction rationnelle) ? Exemple.



Fonctions Rationnelles1

polynômes. Le domaine de définition d'une fonction rationnelle comprend toutes les valeurs réelles de sauf celles qui annulent le dénominateur ( 



2. Continuité des fonctions

à droite ou continue à gauche. Toutes les fonctions suivantes sont continues sur leur domaine de définition : - polynomiales. - rationnelles. - racines.



c. Fonctions irrationnelles Fonction de la forme f : ? ? ?

SUJET DE REVISION : Domaine de définition des fonctions rationnelles. CLASSE : 4eme Scientifique et HP. SUJET DE LECON : Fonctions irrationnelles (suite) 



Domaine de définition dune fonction : solutions des exercices

Remédiation mathématique - A. Vandenbruaene. 1. Domaine de définition d'une fonction : solutions des exercices. 1. f (x) =.



Domaine et racines dune fonction

Comment déterminer le domaine à partir de son expression analytique ? 1er cas : la fonction contient une fraction. Il faut que le dénominateur soit différent de 



Fiche savoir faire :

Domaine de définition des fonctions rationnelles et irrationnelles. 1er cas : la fonction est rationnelle. Méthode f(x) = P(x). C.E. :/ et domf = R. Exemple.



Chapitre 3 Dérivabilité des fonctions réelles

D`es la seconde moitié du 17e si`ecle le domaine mathématique de une fonction rationnelle (quotient de deux polynômes) est dérivable sur son ensemble.



Dynamique des fonctions rationnelles sur des corps locaux

A chaque fonction rationnelle R G Cp(z) on associe son domaine de quasi-périodicité qui est égal à l'intérieur de l'ensemble des points dans P(CP) qui sont 



[PDF] La fonction rationnelle

a) Déterminer le domaine de cette fonction b) Simplifier cette fonction sur son domaine c) Déterminer les équations des asymptotes verticales d) Déterminer 



[PDF] Fonctions Rationnelles1 - pinkmathsch

Le domaine de définition d'une fonction rationnelle comprend toutes les valeurs réelles de sauf celles qui annulent le dénominateur ( ) Exemple : ( ) 



[PDF] Fonctions Polynômes et Fonctions Rationnelles

Si F est une fraction rationnelle à coefficients réels le domaine de définition de F est l'ensemble R privé des pôles réels 2 1 3 Partie entière Soit F = P



[PDF] Domaine de définition des fonctions rationnelles et irrationnelles

Domaine de définition des fonctions rationnelles et irrationnelles 1er cas : la fonction est rationnelle Méthode f(x) = P(x) C E :/ et domf = R Exemple



[PDF] CHAPITRE 4 : FONCTION RATIONNELLE

CHAPITRE 4 : FONCTION RATIONNELLE RÉSOLUTION DE PROBLÈMES Numéro 1 : Numéro 2 : Numéro 3 : Numéro 4 : Page 2 Numéro 5 : Numéro 6 : Numéro 7: Page 3 



[PDF] FONCTIONS RATIONNELLES - maths et tiques

Yvan Monka – Académie de Strasbourg – www maths-et-tiques FONCTIONS RATIONNELLES I Dérivées des fonctions rationnelles 1) Fonction inverse



[PDF] Fonctions rationnelles et algébriques

Exemple 1 Trouvez le domaine et les zéros de ( ) 2 1 1 x f x x ? = ? Fonctions rationnelles n'est pas un zéro de la fonction



[PDF] Etude dune fonction rationnelle Exercice 1 - Plus de bonnes notes

Exercice 1 On définit la fonction f par f (x) = c la courbe représentative de f dans ( ) 1) Donner l'ensemble de définition de f



[PDF] Exemple dune étude complète dune fonction rationnelle - Free

Déterminer les limites de f aux bornes ouvertes de son ensemble de définition et en déduire les éventuelles asymptotes à Cf parallèles aux axes 3 Déterminer 



[PDF] Domaine de définition dune fonction : solutions des exercices

Remédiation mathématique - A Vandenbruaene 1 Domaine de définition d'une fonction : solutions des exercices 1 f (x) =

:
Chapitre 3 Dérivabilité des fonctions réelles Chapitre 3D´erivabilit´e des fonctions r´eelles La notion de d´eriv´ee est une notion fondamentale en analyse.Elle permet d"´etudier les variations d"une fonction, de construire des tangentes `a une courbe et de r´esoudre des probl`emes d"optimisation. En physique, lorsqu"une grandeur est fonction du temps, la d´eriv´ee de cette grandeur donne la vitesse instantan´ee de variation de cette grandeur, et la d´eriv´ee seconde donne l"acc´el´eration.

3.1 Fonctions d´erivables

Dans tout ce chapitre,d´esigne un intervalle non vide deR. D´efinition 3.1.1.Soit:Rune fonction, et soit0. On dit queest d´erivable en0si la limite lim

0(0+)(0)

existe, et est finie. Cette limite s"appelle la d´eriv´ee deen0, on la note(0). Bien sˆur, il revient au mˆeme de regarder la limite lim

0()(0)

0

Rappelons l"interpr´etation g´eom´etrique de la d´eriv´ee : siest d´erivable en0, alors

la courbe repr´esentative de la fonctionadmet une tangente au point (0(0)), de coefficient directeur(0).

En fait, la fonction(0+)(0)

dont on consid`ere ici la limite en 0, n"est pas

d´efinie en ce point. Dans ce cas, l"existence de la limite ´equivaut `a l"´egalit´e des limites `a

gauche et `a droite. C"est pourquoi on introduit les d´eriv´ees `a gauche et `a droite. D´efinition 3.1.2.Soit:Rune fonction, et soit0. 27
(1) On dit queest d´erivable `a gauche en0si la limite lim

00(0+)(0)

existe, et est finie. Cette limite s"appelle la d´eriv´ee de`a gauche en0, on la note (0). (2) On d´efinit de mˆeme la d´eriv´ee `a droite, que l"on note(0).

Proposition 3.1.3.Soit: []Rune fonction.

(1)Soit0][. Alorsest d´erivable en0si et seulement siest d´erivable `a droite et `a gauche en0et(0) =(0). (2)est d´erivable ensi et seulement siest d´erivable `a droite en. (3)est d´erivable ensi et seulement siest d´erivable `a gauche en. Les notions de d´eriv´ee `a droite et `a gauche ne sont pas tr`es importantes. Elles per- mettent cependant de v´erifier qu"une fonction est (ou n"est pas)d´erivable en un point. Proposition 3.1.4.Siest d´erivable en0, alorsest continue en0. D´emonstration.Supposonsd´erivable en0, alors la limite lim

0=0()(0)

0 existe, et est finie. En multipliant par la fonction (0), qui tend vers 0, on en d´eduit que lim

0=0()(0) = 0

c"est-`a-dire lim

0=0() =(0)

ce qui montre queest continue en0. La r´eciproque est fausse. Par exemple, la fonction: est continue en 0, mais n"est pas d´erivable en ce point. En effet,(0) =1 et(0) = 1. Proposition 3.1.5.Soit:Rune fonction, et soit0. Alorsest d´erivable en

0, de d´eriv´ee(0), si et seulement si il existe une fonctiontelle quelim0() = 0,

satisfaisant (0+) =(0) +(0) +() pour touttel que0+. 28
D´emonstration.. Supposonsd´erivable en0. Alors il suffit de d´efinir () =(0+)(0) (0) pour= 0, et(0) = 0.. Supposons qu"il existe une fonctiontelle que lim0() = 0, satisfaisant (0+) =(0) ++() pour un certain r´eel. On peut ´ecrire : (0+)(0) Quandtend vers 0, le membre de droite tend vers. Doncest d´erivable en0et (0) =. Cons´equences imm´ediates de cette proposition : - siest d´erivable en0, et siest un r´eel, alorsest d´erivable en0, de d´eriv´ee (0). - une fonction constante est partout d´erivable, de d´eriv´eenulle. - une fonction affine:+est partout d´erivable, et(0) =pour tout0.

Voici deux exemples bien connus.

Exemples.a) Soit1 un entier, nous allons d´eriver la fonction:. Soit0 un r´eel fix´e, alors d"apr`es la formule du binˆome de Newton nous avons, pour tout, (0+) = (0+)=? =0? 0 =0+(10) +2? =2? 20? et le dernier terme est une fonction de la forme(). Ainsi,est d´erivable en0, et (0) =10. b) Soit la fonction:1 , et soit0= 0. Alors, pour toutnous avons (0+)(0) =1

0+10=0(0+)

d"o`u lim

0(0+)(0)

=120

Doncest d´erivable en0, et(0) =1

20. 29
C"est Blaise Pascal qui, au d´ebut du 17esi`ecle, a le premier men´e des ´etudes sur la notion de tangente `a une courbe.

D`es la seconde moiti´e du 17

esi`ecle, le domaine math´ematique de l"analyse num´erique connaˆıt une avanc´ee prodigieuse grˆace aux travaux de Newtonet de Leibniz en mati`ere de calcul diff´erentiel et int´egral. Le marquis de l"Hˆopital participe aussi, `a la fin du 17 esi`ecle, `a ´etoffer cette nouvelle th´eorie, notamment en utilisant la d´eriv´ee pour calculerune limite dans le cas de formes

ind´etermin´ees particuli`eres (c"est la r`egle de L"Hˆopital, ´enonc´ee `a la fin du chapitre).

Finalement, d"Alembert introduit la d´efinition rigoureuse dunombre d´eriv´e en tant que limite du taux d"accroissement - sous une forme semblable `a celle qui est enseign´ee de nos jours. Cependant, `a l"´epoque de d"Alembert, c"est la notion de limite qui pose probl`eme. C"est seulement avec les travaux de Weierstrass au milieu du 19esi`ecle que le concept de d´eriv´ee sera enti`erement formalis´e.

C"est Lagrange (fin du 18

esi`ecle) qui a introduit la notation(0) pour d´esigner la d´eriv´ee deen0. Leibniz notait (0) et Newton (0). Ces trois notations sont encore usit´ees de nos jours.

3.2 Op´erations sur les d´eriv´ees

Commen¸cons par les op´erations alg´ebriques sur les d´eriv´ees. Th´eor`eme 3.2.1.Soient:Rdeux fonctions, et soit0. On suppose que etsont d´erivables en0. Alors (1)+est d´erivable en0, et (+)(0) =(0) +(0) (2)est d´erivable en0, et ()(0) =(0)(0) +(0)(0) (3)si(0)= 0, alors est d´erivable en0, et (0) =(0)(0)(0)(0)(0)2

D´emonstration.(1) Il suffit d"´ecrire

(() +())((0) +(0))

0=()(0)0+()(0)0

30
et de passer `a la limite quand0. (2) Il suffit d"´ecrire ()()(0)(0)

0=()(0)0() +(0)()(0)0

et de passer `a la limite quand0, en se servant de la continuit´e deen0. (3) Nous avons 1 ()1(0)

0=1()(0)()(0)0

Par passage `a la limite, on en d´eduit que la fonction 1 est d´erivable en0, de d´eriv´ee ?1 (0) =(0)(0)2

On applique alors le point (1) qui donne

(0) =(0)1(0)+(0)? (0)(0)2? d"o`u le r´esultat.

Cons´equences de ce th´eor`eme :

- une fonction polynˆome est d´erivable surR, et sa d´eriv´ee est un polynˆome. - une fonction rationnelle (quotient de deux polynˆomes) est d´erivable sur son ensemble de d´efinition, et sa d´eriv´ee est une fonction rationnelle. En effet, nous avons vu que les fonctions de la formesont d´erivables sur toutR. On en d´eduit que les monˆomessont d´erivables, puis que les sommes de

monˆomes, c"est-`a-dire les polynˆomes, sont d´erivables surR. Le r´esultat pour les fonctions

rationnelles en d´ecoule, par d´erivation d"un quotient. Apr`es les op´erations alg´ebriques, passons `a la composition des fonctions. Th´eor`eme 3.2.2(D´erivation des fonctions compos´ees).Soient:Ret:R deux fonctions telles que(), et soit0. Siest d´erivable en0, et siest d´erivable en(0), alorsest d´erivable en0et ()(0) =((0))(0) D´emonstration.Il existe des fonctions1et2telles que lim

01() = 0 = lim02()

satisfaisant, pour tout, (0+) =(0) +(0) +1() 31
et, pour tout, ((0) +) =((0)) +((0)) +2()

Prenons en particulier

=((0) +1())

Alors nous avons

((0+)) =((0) +) =((0)) +((0)) +2() =((0)) +((0) +1())((0)) +((0) +1())2(((0) +1())) =((0)) +(0)((0)) +3() o`u l"on a pos´e

3() =1()((0)) + ((0) +1())2(((0) +1()))

Il est clair que lim

03() = 0, d"o`u le r´esultat.

On voudrait `a pr´esent calculer les d´eriv´ees des fonctions usuelles. Montrer que les

fonctions trigonom´etriques sin et cos sont d´erivables (et calculer leurs d´eriv´ees) n"est pas

´evident, et d´epend des d´efinitions que l"on donne pour ces fonctions. Pour log et exp, c"est plus facile... si on d´efinit log comme l"unique primitive de1 sur ]0+[ qui s"annule en 1. Mais encore faut-il montrer qu"une telle primitive existe : ce sera un r´esultat important du chapitre consacr´e `a l"int´egration. La fonction exp est ensuite d´efinie comme la r´eciproque de la fonction log, et pour la d´eriver on se sert du r´esultat suivant. Th´eor`eme 3.2.3(D´erivation des fonctions r´eciproques).Soit:Rune fonction continue strictement monotone. Alors : (1)L"ensemble:=()est un intervalle, dont les bornes sont les limites deaux bornes de. La fonctionr´ealise une bijection entreet. (2)La bijection r´eciproque1:est continue strictement monotone, de mˆeme sens de variations que. (3)Siest d´erivable en un point0, et si(0)= 0, alors1est d´erivable au point0=(0)et (1)(0) =1 (0)=1(1(0)) D´emonstration.(1) et (2) : c"est le th´eor`eme de la bijection (voir le chapitre 2). (3). Supposonsd´erivable en0. Soit0=(0) et soit, on s"int´eresse `a la quantit´e

1()1(0)

0 32

Posons=1(), alors cette quantit´e s"´ecrit

0 ()(0)

Comme1est continue en0, nous avons :

lim

01() =1(0) =0

Par composition des limites, on en d´eduit que

lim 0

1()1(0)

0= lim00()(0)=1(0)

d"o`u le r´esultat. Exemple.Supposons que la fonction1sur ]0+[ admette une primitive, not´ee log, qui s"annule en 1. Soit exp :R]0+[ l"application r´eciproque de log. Alors expquotesdbs_dbs33.pdfusesText_39
[PDF] mode médiane et moyenne (statistique)

[PDF] exercices modes et temps verbaux

[PDF] construire une phrase en français pdf

[PDF] fiche cerise pro organisationnel

[PDF] fiche cerise pro stage

[PDF] psyche rock bejart

[PDF] psyché rock film

[PDF] psyché rock pierre henry

[PDF] imparfait espagnol tableau

[PDF] racine double d'un polynome de degré 3

[PDF] induction florale pdf

[PDF] preparation conseil de classe questionnaire eleve

[PDF] transition florale

[PDF] modele abc arabidopsis

[PDF] quels genes controlent la construction des differentes pieces florales