[PDF] Limites et asymptotes 1) Limite infinie à l'infini.





Previous PDF Next PDF



Limites de fonctions 1 Théorie 2 Calculs

Montrer que toute fonction croissante et majorée admet une limite finie en +?. 2 Calculs. Exercice 3 Calculer lorsqu'elles existent les limites suivantes a) 



Limites de fonctions 1 Théorie

Ce qui exprime bien que la limite de f en +? est l. Correction de l'exercice 2 ?. Généralement pour calculer des limites faisant intervenir des sommes de 



Développements limités

2(2n + 1) x2n+1 + o(x2n+1) . Pour illustrer les différentes techniques nous proposons de calculer le développement de la fonction tangente d'ordre 5 par sept 



ficall.pdf

69 123.03 Limite de fonctions 156 220.05 Calcul de la somme d'une série entière ... 1. Les assertions a b



Théorie du signal

1 Introduction à la théorie du signal 4.3.2 Fonctions orthogonales de Rademacher et de Walsh . ... Calcul de l'intégrale d'un produit avec un Dirac.



cours-exo7.pdf

Fonctions usuelles. Développements limités. Intégrales I. Intégrales II x?1 est bijective. Calculer sa bijection réciproque. 4. Ensembles finis.



Mécanique des milieux continus

14 mars 2020 7.3.2 Calcul des efforts appliqués 99 ... 11.1.1 Théorie thermoélastique 147. 11.1.2 ... supposent la continuité des fonctions en cause.



Limites et asymptotes

1) Limite infinie à l'infini. Définition 1 : Soit f une fonction définie au moins sur un intervalle du type [a;+?[ : 2) Limite finie à l'infini.



Cours danalyse 1 Licence 1er semestre

2. Proposition 1.1.1 Le nombre. ?. 2 n'est pas un nombre rationnel. (limite d'une suite continuité d'une fonction) et de rappeler les définitions ...



livre-analyse-1.pdf - Exo7 - Cours de mathématiques

Limites et fonctions continues. 37. 1. Notions de fonction . d'un champ le diviser en deux parties égales

Année 2005-20061èreS

Chap V :Limites et asymptotes

I. Limites en l"infini

1) Limite infinie à l"infini

Définition 1 :Soitfune fonction définieau moinssur un intervalle du type[a;+∞[: On dit quefa pour limite+∞en+∞et on notelimx→+∞f(x) = +∞sif(x)est aussi grand que l"on veut dès quexest assez grand ( Lorsqu"on dit grand, on sous-entend positif ). faire le lien avec tableau de variations

Exemple :limx→+∞x= +∞;limx→+∞x2= +∞;limx→+∞x3= +∞;limx→+∞⎷x= +∞

On définit de mêmelimx→+∞f(x) =-∞parf(x)est aussi grand dans les négatifs que l"on veut dès

quexest assez grand.

On définit encore de manière analoguelimx→-∞f(x) = +∞,limx→-∞f(x) =-∞

(attention toutefois à l"ensemble de définition). Exemple :limx→-∞x=-∞;limx→-∞x2= +∞;limx→-∞x3=-∞

2) Limite finie à l"infini

Définition 2 :Soitfune fonction définieau moinssur un intervalle du type[a;+∞[: On dit quefa pour limite0en+∞et on notelimx→+∞f(x) = 0sif(x)est aussi petit que l"on veut dès quexest assez grand ( Lorsqu"on dit petit, on sous-entend proche de zéro ). On définira de même :limx→-∞f(x) = 0.

Exemple :limx→+∞1

x= 0;limx→+∞1x2= 0;limx→+∞1x3= 0;limx→+∞1⎷x= 0

Exemple :limx→-∞1

x= 0;limx→-∞1x2= 0;limx→-∞1x3= 0

Page 1/5

Année 2005-20061èreS

On peut à présent définir une limite quelconque en l"infini : Définition 3 :Soitfune fonction définieau moinssur un intervalle du type[a;+∞[: Avoirlimx→+∞f(x) =lest équivalent à avoirlimx→+∞[f(x)-l] = 0 Remarque :limx→+∞f(x) =l?f(x) =l+ε(x)aveclimx→+∞ε(x) = 0. -→démonstration Remarque :Une fonction n"a pas nécessairement de limite (finie ou infinie) lorsquextend vers fdéfinie surRparf(x) = cos(x)n"a de limite ni en-∞ni en+∞.

II. Limite en un pointa

1) Limite en0

Définition 4 :Soitfune fonction définie au moins sur un intervalle ouvert en0: Sif(x)est aussi grand (positif) que l"on veut dès quexest assez proche de0, on dit quefa pour limite+∞en0et on notelimx→0f(x) = +∞. (On définit de mêmelimx→0f(x) =-∞.)

Exemple :limx→01

x2= +∞limx→01⎷x= +∞. Remarque :Une fonction peut avoir une limite différente à gauche et à droite de0, on notera alors : lim x→0 x >01 x= +∞etlim x→0 x <01x=-∞ou encorelim x→0 x >01x3= +∞etlim x→0 x <01x3=-∞

On note également parfois :lim

x→0+1 x3= +∞. Définition 5 :Soitfune fonction définie au moins sur un intervalle ouvert en0: Sif(x)est aussi petit que l"on veut (proche de0) dès quexest assez proche de0, on dit quefa pour limite0en0et on notelimx→0f(x) = 0. Exemple :limx→0x= 0;limx→0x2= 0;limx→0x3= 0;limx→0⎷ x= 0 Définition 6 :Soitfune fonction définie au moins sur un intervalle ouvert en0: On dit quefa pour limitelen0lorsque la fonctionx?→f(x)-la pour limite0 en0. Remarque :On peut traduire mathématiquement cette définition par lim x→0f(x) =l?limx→0?f(x)-l?= 0

Page 2/5

Année 2005-20061èreS

2) Limites ena?R

Définition 7 :Soitfune fonction définie sur un intervalle ouvert ena, on dit quefa une limite enasi la fonctionh?→f(a+h)a une limite en0et alors : lim x→af(x) = limh→0f(a+h)

Exemple :On alimx→1?

1 +1 (x-1)2? = lim h→0?

1 +1h2?

Remarque :limx→af(x) =l?f(x) =l+ε(x)aveclimx→aε(x) = 0. Remarque :Sia?Dfet silimx→af(x)existe, alorslimx→af(x) =f(a).

Exemple :Sia >0,limx→a⎷

x=⎷a.

SiPest un polynôme,limx→aP(x) =P(a).

SiRest une fraction rationnelledéfinie ena,limx→aR(x) =R(a).

III. Opérations sur les limites

Dans toute cettte partie les limites des fonctionsfetgsont??aux mêmes points??à savoir+∞, -∞oua?R.

1) Somme

On a le tableau récapitulatif suivant :

limf(x) =lll+∞-∞+∞ limg(x) =l?+∞-∞+∞-∞-∞ lim?f(x) +g(x)?=l+l?+∞-∞+∞-∞F.I

2) Produit

On a le tableau récapitulatif suivant :

limf(x) =ll >0l <0l >0l <0+∞-∞+∞0 limg(x) =l?+∞-∞+∞-∞-∞+∞ou-∞

Page 3/5

Année 2005-20061èreS

3) Quotient

On a le tableau récapitulatif suivant :

limf(x) =+∞-∞±∞l <0ou-∞l >0ou+∞0 limg(x) =l?>0l?<0l?>0l?<0±∞0+0-0+0-0 lim?f(x)g(x)? Remarque :•0+(resp.0+) indique que la limite est nulle et que la fonction reste positive (resp. négative). •Il y a quatre formes indéterminées :+∞ - ∞;0× ∞;∞ ∞;00 Remarque :Avec ces régles de calcul et quelques transformations on peut trouver n"importe quelle limite. Exemple :On cherchelimx→+∞?x3-3x2+ 4x+ 1?. Si on voit ce polynôme comme une somme de monômes on obtient une F.I. du type +∞ - ∞mais on peut toujours écrirex3-3x2+ 4x+ 1 =x3? 1-3 x+4x2+1x3? aveclimx→+∞x3= +∞etlimx→+∞? 1-3 x+4x2+1x3? = 1-0 + 0 + 0 = 1par somme des limites. On a donc, par produit des limites,limx→+∞?x3-3x2+ 4x+ 1?= +∞vu comme??1×+∞??. -→A faire en TD : cas des polynômes et des fractions rationnelles.

IV. Interprétation graphique et asymptotes

1) Asymptote horizontale

Silimx→+∞f(x) =l,

pourMetPles points d"abscissesx, lorsquexprend des valeurs de plus en plus grandes, la distance

PMtend vers0:

On dit alors que la droiteDd"équationy=lest

asymptote horizontaleà la courbeCfau voisinage de+∞. Interprétation graphique pourlimx→-∞f(x) =l 0123

0 1 2 3 4 5 6 7 8

xyx lD Cf PM

Remarque :On peut définir de même l"asymptote d"équationy=len-∞silimx→-∞f(x) =l

Page 4/5

Année 2005-20061èreS

2) Asymptote verticale

Silimx→af(x) =±∞,

on dit que la droiteDd"équationx=aest asymptote verticaleà la courbeCf. PetMsont ici les deux points de même ordonnée et la distancePMtend vers zéro lorsque cette ordonnée dePetMtend vers+∞. Interprétation graphique pourlimx→af(x) =-∞ 01234

0 1 2 3

xyaD Cf

••P M

3) Asymptote oblique

Définition 8 :Soitfune fonction définie sur un intervalle du type[α;+∞[, s"il existe deux réelsa

etbtels quelimx→+∞[f(x)-(ax+b)] = 0on dira que la droiteDd"équationy=ax+b est asymptote obliqueàCfau voisinage de+∞. Remarque :•La méthode de détermination est H.P. •On a nécessairementlimx→+∞f(x) = +∞

Interprétation graphique, avecPet

Mles deux points d"abscissesx, pour

limx→+∞[f(x)-(ax+b)] = 0 01234

0 1 2 3 4 5 6 7 8

xyx

DCf••

PM

On peut de même définir une asymptote oblique au voisinage de-∞silimx→-∞[f(x)-(ax+b)] = 0.

Page 5/5

quotesdbs_dbs23.pdfusesText_29
[PDF] Le contrôle de gestion dans la Grande Distribution - DoYouBuzz

[PDF] Exercices - Calcul d intégrales : corrigé Intégration par parties

[PDF] Seconde - Calcul de probabilités - Parfenoff

[PDF] formules de topographie2016AP

[PDF] TD d 'exercices de Géométrie dans l 'espace - Math93

[PDF] Limitation desdébitsd 'eauxpluvialesen - AgroParisTech

[PDF] referentiel indemnisation - Oniam

[PDF] Petit cours pour comprendre la notion de degré de liberté en

[PDF] CHAPITRE XIII : Les circuits ? courant alternatif : déphasage - IIHE

[PDF] La fonction exponentielle - Lycée d 'Adultes

[PDF] le temps de travail - CIG Versailles

[PDF] Formules de calcul des agrégats de la comptabilité nationale - 9alami

[PDF] CHAPITRE 6 : LES ESCALIERS

[PDF] 1 Gérer la paie (p 5)

[PDF] Outil 1 Indicateurs RH et d 'activité - MDEF