[PDF] Convex Optimization This book is about convex





Previous PDF Next PDF



Convex Optimization

This book is about convex optimization a special class of mathematical optimiza- tion problems



Optimisation convexe

convexe et des algorithmes plus spécifiquement des algorithmes proximaux de l'optimisation de fonctions convexes différentiables la seconde de l' ...



Eléments danalyse et doptimisation convexe.

Dans ce chapitre nous présentons quelques propriétés remarquables des fonctions convexes. Elle permettront de construire des algorithmes de minimisation dans 



Optimisation et analyse convexe

OPTIMISATION. ET. ANALYSE CONVEXE. Exercices et problèmes corrigés avec rappels de cours. Jean-Baptiste Hiriart-Urruty. Collection dirigée par Daniel Guin.



Convex Optimization

4 sept. 2009 Boyd & Vandenberghe Convex Optimization



Convex Optimization – Boyd and Vandenberghe

surprisingly many problems can be solved via convex optimization. Introduction. 1–8 convex and y is a random variable with log-concave pdf then.



Optimisation des fonctions convexes

Optimisation des fonctions convexes D7 : Une fonction réelle f définie sur C convexe est dite convexe si pour tout (a



Convex Optimization Basics

Is this convex? What is the criterion function? The inequality and equality constraints? Feasible set? Is the solution unique when: • n 



COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin

La fonction f est convexe (donc toute combinaison linéaire avec des coefficients stric- tement positifs de fonctions convexes est convexe). 2. Si au moins l'une 



Non-Parametric Discrete Registration with Convex Optimisation

sition of similarity and regularisation term into two convex optimisation steps. This approach enables non-parametric registration with billions.



[PDF] Optimisation convexe - Institut de Mathématiques de Bordeaux

Ce document est un support pour le cours d'optimisation Il n'a donc pas vocation `a être complet mais vient en appui aux séances de cours



[PDF] Eléments danalyse et doptimisation convexe

19 fév 2020 · 4 1 Méthodes optimales en optimisation convexe différentiable 45 4 1 1 Cas convexe différentiable



[PDF] Cours en Master M1 SITN

2 2 1 Fonctions convexes strictement convexes fortement convexes 11 4 2 3 Applications de la théorie du point selle à l'optimisation



[PDF] Optimisation convexe : géométrie modélisation et applications

19 nov 2009 · 1 Géométrie et analyse convexe 2 Optimisation : idées exemples convexité 3 Optimisation de la production électrique en France



[PDF] Optimisation convexe non-lisse - ENS Lyon

In our opinion convex optimization is a natural next topic after advanced linear algebra and linear programming (Stephen Boyd and Lieven Vandenberghe) 



[PDF] Optimisation linéaire & convexité

I 1 Introduction à la programmation linéaire 1 I 1 1 Un problème d'optimisation linéaire en dimension 2 II 2 4 Fonctions convexes



[PDF] Convexité en optimisation convexité forte

On dit que f est strictement convexe si l'inégalité ci-dessus est stricte pour x = y t ?]01[ Rappelons que toute fonction convexe possède une régularité 



[PDF] Cours Apprentissage - ENS Math/Info Optimisation Convexe

16 oct 2015 · pdf pour la r`egle dite d'Armijo – Analyse théorique – Hypoth`eses pour résultat théorique simple : f deux fois dérivable convexe LI f (x)



[PDF] OPTIMISATION ET ANALYSE CONVEXE - Numilog

Pour les fonctions convexes différentiables on pourra consulter [12] Cha- pitre IV Section 4 par exemple * Exercice I 1 Soit f : Rn ?? R continûment 



[PDF] compléments danalyse : convexité et optimisation - ENS Rennes

1 1 1 Généralités 1 1 2 Convexité dans les espaces de Hilbert 5 1 3 Convexité et convergence faible 12 2 Fonctions convexes

  • Comment montrer qu'un problème est convexe ?

    Théorème 2.1 Un fonction f est convexe si et seulement si, pour tout (x, y) ? (dom(f))2 et ? ? 0 tels que y + ?(y ? x) ? dom(f), f satisfait : f(y + ?(y ? x)) ? f(y) + ?(f(y) ? f(x)).19 fév. 2020
  • Comment la convexité permet d'optimiser certains marchés économiques ?

    C'est un concept utile dans le cadre du trading sur obligations car la comparaison des durées des obligations peut permettre aux investisseurs d'anticiper le degré de variation du cours d'une obligation suite à un changement de taux d'intérêt.
  • Comment montrer qu'une fonction est fortement convexe ?

    Une fonction f : K ?? R est dite fortement convexe ou uniformément convexe ou ?-convexe ou ?-elliptique s'il existe ? > 0 tel que, pour tous (x, y) ? K2, t ? [0,1], f(tx + (1 ? t)y) ? tf(x) + (1 ? t)f(y) ? ? 2 t(1 ? t)x ? y2.
  • La fonction f est convexe sur I si sa dérivée f ' est croissante sur I, soit f ''(x) ? 0 pour tout x de I. La fonction f est concave sur I si sa dérivée f ' est décroissante sur I, soit f ''(x) ? 0 pour tout x de I. Soit la fonction f définie sur R par f (x) = 1 3 x3 ?9x2 + 4.
Convex Optimization

Convex Optimization

Convex OptimizationStephen BoydDepartment of Electrical EngineeringStanford UniversityLieven VandenbergheElectrical Engineering DepartmentUniversity of California, Los Angeles

cambridge university pressCambridge, New York, Melbourne, Madrid, Cape Town, Singapore, S˜ao Paolo, Delhi

Cambridge University Press

The Edinburgh Building, Cambridge, CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York http://www.cambridge.org Information on this title: www.cambridge.org/9780521833783 c ?Cambridge University Press 2004 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Seventh printing with corrections 2009

Printed in the United Kingdom at the University Press, Cambridge A catalogue record for this publication is available from the British Library Library of Congress Cataloguing-in-Publication data

Boyd, Stephen P.

Convex Optimization / Stephen Boyd & Lieven Vandenberghe p. cm.

Includes bibliographical references and index.

ISBN 0 521 83378 7

1. Mathematical optimization. 2. Convex functions. I. Vandenberghe, Lieven. II. Title.

QA402.5.B69 2004

519.6-dc22 2003063284

ISBN 978-0-521-83378-3 hardback

Cambridge University Press has no responsiblity for the persistency or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. For

Anna, Nicholas, and Nora

Dani¨el and Margriet

Contents

Prefacexi

1 Introduction1

1.1 Mathematical optimization. . . . . . . . . . . . . . . . . . . . . . . .1

1.2 Least-squares and linear programming. . . . . . . . . . . . . . . . . .4

1.3 Convex optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . .7

1.4 Nonlinear optimization. . . . . . . . . . . . . . . . . . . . . . . . . .9

1.5 Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

1.6 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

I Theory19

2 Convex sets21

2.1 Affine and convex sets. . . . . . . . . . . . . . . . . . . . . . . . . . .21

2.2 Some important examples. . . . . . . . . . . . . . . . . . . . . . . . .27

2.3 Operations that preserve convexity. . . . . . . . . . . . . . . . . . . .35

2.4 Generalized inequalities. . . . . . . . . . . . . . . . . . . . . . . . . .43

2.5 Separating and supporting hyperplanes. . . . . . . . . . . . . . . . . .46

2.6 Dual cones and generalized inequalities. . . . . . . . . . . . . . . . . .51

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

3 Convex functions67

3.1 Basic properties and examples. . . . . . . . . . . . . . . . . . . . . .67

3.2 Operations that preserve convexity. . . . . . . . . . . . . . . . . . . .79

3.3 The conjugate function. . . . . . . . . . . . . . . . . . . . . . . . . .90

3.4 Quasiconvex functions. . . . . . . . . . . . . . . . . . . . . . . . . . .95

3.5 Log-concave and log-convex functions. . . . . . . . . . . . . . . . . .104

3.6 Convexity with respect to generalized inequalities. . . . . . . . . . . .108

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 viiiContents

4 Convex optimization problems127

4.1 Optimization problems. . . . . . . . . . . . . . . . . . . . . . . . . .127

4.2 Convex optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . .136

4.3 Linear optimization problems. . . . . . . . . . . . . . . . . . . . . . .146

4.4 Quadratic optimization problems. . . . . . . . . . . . . . . . . . . . .152

4.5 Geometric programming. . . . . . . . . . . . . . . . . . . . . . . . . .160

4.6 Generalized inequality constraints. . . . . . . . . . . . . . . . . . . . .167

4.7 Vector optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . .174

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

5 Duality215

5.1 The Lagrange dual function. . . . . . . . . . . . . . . . . . . . . . . .215

5.2 The Lagrange dual problem. . . . . . . . . . . . . . . . . . . . . . . .223

5.3 Geometric interpretation. . . . . . . . . . . . . . . . . . . . . . . . .232

5.4 Saddle-point interpretation. . . . . . . . . . . . . . . . . . . . . . . .237

5.5 Optimality conditions. . . . . . . . . . . . . . . . . . . . . . . . . . .241

5.6 Perturbation and sensitivity analysis. . . . . . . . . . . . . . . . . . .249

5.7 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

5.8 Theorems of alternatives. . . . . . . . . . . . . . . . . . . . . . . . .258

5.9 Generalized inequalities. . . . . . . . . . . . . . . . . . . . . . . . . .264

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273

II Applications289

6 Approximation and fitting291

6.1 Norm approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . .291

6.2 Least-norm problems. . . . . . . . . . . . . . . . . . . . . . . . . . .302

6.3 Regularized approximation. . . . . . . . . . . . . . . . . . . . . . . .305

6.4 Robust approximation. . . . . . . . . . . . . . . . . . . . . . . . . . .318

6.5 Function fitting and interpolation. . . . . . . . . . . . . . . . . . . . .324

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344

7 Statistical estimation351

7.1 Parametric distribution estimation. . . . . . . . . . . . . . . . . . . .351

7.2 Nonparametric distribution estimation. . . . . . . . . . . . . . . . . .359

7.3 Optimal detector design and hypothesis testing. . . . . . . . . . . . .364

7.4 Chebyshev and Chernoff bounds. . . . . . . . . . . . . . . . . . . . .374

7.5 Experiment design. . . . . . . . . . . . . . . . . . . . . . . . . . . . .384

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393

Contentsix

8 Geometric problems397

8.1 Projection on a set. . . . . . . . . . . . . . . . . . . . . . . . . . . .397

8.2 Distance between sets. . . . . . . . . . . . . . . . . . . . . . . . . . .402

8.3 Euclidean distance and angle problems. . . . . . . . . . . . . . . . . .405

8.4 Extremal volume ellipsoids. . . . . . . . . . . . . . . . . . . . . . . .410

8.5 Centering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416

8.6 Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422

8.7 Placement and location. . . . . . . . . . . . . . . . . . . . . . . . . .432

8.8 Floor planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .438

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .447

III Algorithms455

9 Unconstrained minimization457

9.1 Unconstrained minimization problems. . . . . . . . . . . . . . . . . .457

9.2 Descent methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . .463

9.3 Gradient descent method. . . . . . . . . . . . . . . . . . . . . . . . .466

9.4 Steepest descent method. . . . . . . . . . . . . . . . . . . . . . . . .475

9.5 Newton"s method. . . . . . . . . . . . . . . . . . . . . . . . . . . . .484

9.6 Self-concordance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .496

9.7 Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .508

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .513 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .514

10 Equality constrained minimization521

10.1 Equality constrained minimization problems. . . . . . . . . . . . . . .521

10.2 Newton"s method with equality constraints. . . . . . . . . . . . . . . .525

10.3 Infeasible start Newton method. . . . . . . . . . . . . . . . . . . . . .531

10.4 Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .542

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .556 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .557

11 Interior-point methods561

11.1 Inequality constrained minimization problems. . . . . . . . . . . . . .561

11.2 Logarithmic barrier function and central path. . . . . . . . . . . . . .562

11.3 The barrier method. . . . . . . . . . . . . . . . . . . . . . . . . . . .568

11.4 Feasibility and phase I methods. . . . . . . . . . . . . . . . . . . . . .579

11.5 Complexity analysis via self-concordance. . . . . . . . . . . . . . . . .585

11.6 Problems with generalized inequalities. . . . . . . . . . . . . . . . . .596

11.7 Primal-dual interior-point methods. . . . . . . . . . . . . . . . . . . .609

11.8 Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .615

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .621 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .623 xContents

Appendices631

A Mathematical background633

A.1 Norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .633 A.2 Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .637 A.3 Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .639 A.4 Derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .640 A.5 Linear algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .645 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .652

B Problems involving two quadratic functions653

B.1 Single constraint quadratic optimization. . . . . . . . . . . . . . . . .653 B.2 The S-procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .655 B.3 The field of values of two symmetric matrices. . . . . . . . . . . . . .656 B.4 Proofs of the strong duality results. . . . . . . . . . . . . . . . . . . .657 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .659

C Numerical linear algebra background661

C.1 Matrix structure and algorithm complexity. . . . . . . . . . . . . . . .661 C.2 Solving linear equations with factored matrices. . . . . . . . . . . . . .664 C.3 LU, Cholesky, and LDLTfactorization. . . . . . . . . . . . . . . . . .668 C.4 Block elimination and Schur complements. . . . . . . . . . . . . . . .672 C.5 Solving underdetermined linear equations. . . . . . . . . . . . . . . . .681 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .684

References685

Notation697

Index701

PrefaceThis book is aboutconvex optimization, a special class of mathematical optimiza- tion problems, which includes least-squares and linear programming problems. It is well known that least-squares and linear programming problems have a fairly complete theory, arise in a variety of applications, and can be solvednumerically very efficiently. The basic point of this book is that the same can be said for the larger class of convex optimization problems. While the mathematics of convex optimization has been studied for about a century, several related recent developments have stimulated new interest in the topic. The first is the recognition that interior-point methods, developed in the

1980s to solve linear programming problems, can be used to solve convex optimiza-

tion problems as well. These new methods allow us to solve certain new classes of convex optimization problems, such as semidefinite programs andsecond-order cone programs, almost as easily as linear programs. The second development is the discovery that convex optimization problems (beyond least-squares and linear programs) are more prevalent inpractice than was previously thought. Since 1990 many applications have been discovered in areas such as automatic control systems, estimation and signal processing, com- munications and networks, electronic circuit design, data analysis and modeling, statistics, and finance. Convex optimization has also found wide application in com- binatorial optimization and global optimization, where it is used to findbounds on the optimal value, as well as approximate solutions. We believe that many other applications of convex optimization are still waiting to be discovered. There are great advantages to recognizing or formulating a problem as a convex optimization problem. The most basic advantage is that the problem can then be solved, very reliably and efficiently, using interior-point methods or other special methods for convex optimization. These solution methods are reliable enough to be embedded in a computer-aided design or analysis tool, or even a real-time reactive or automatic control system. There are also theoretical or conceptual advantages of formulating a problem as a convex optimization problem. The associated dual problem, for example, often has an interesting interpretation in terms of the original problem, and sometimes leads to an efficient or distributed method for solving it. We think that convex optimization is an important enough topic that everyone who uses computational mathematics should know at least a little bit about it. In our opinion, convex optimization is a natural next topic after advanced linear algebra (topics like least-squares, singular values), and linear programming. xiiPreface

Goal of this book

For many general purpose optimization methods, the typical approach is to just try out the method on the problem to be solved. The full benefits ofconvex optimization, in contrast, only come when the problem is known aheadof time to be convex. Of course, many optimization problems are not convex,and it can be difficult to recognize the ones that are, or to reformulate a problemso that it is convex. Our main goal is to help the reader develop a working knowledge of convex optimization, i.e., to develop the skills and background needed to recognize, formulate, and solve convex optimization problems. Developing a working knowledge of convex optimization can be mathematically demanding, especially for the reader interested primarily in applications. In our experience (mostly with graduate students in electrical engineering and computer science), the investment often pays off well, and sometimes very well. There are several books on linear programming, and general nonlinear pro- gramming, that focus on problem formulation, modeling, and applications. Several other books cover the theory of convex optimization, or interior-point methods and their complexity analysis. This book is meant to be something in between, a book on general convex optimization that focuses on problem formulation and modeling. We should also mention what this book isnot. It is not a text primarily about convex analysis, or the mathematics of convex optimization; several existing texts cover these topics well. Nor is the book a survey of algorithms for convex optimiza- tion. Instead we have chosen just a few good algorithms, and describe only simple, stylized versions of them (which, however, do work well in practice). We make no attempt to cover the most recent state of the art in interior-point (or other) meth- ods for solving convex problems. Our coverage of numerical implementation issues is also highly simplified, but we feel that it is adequate for the potential user to develop working implementations, and we do cover, in some detail, techniques for exploiting structure to improve the efficiency of the methods. We also do not cover, in more than a simplified way, the complexity theory of the algorithms we describe. We do, however, give an introduction to the important ideas of self-concordance and complexity analysis for interior-point methods.

Audience

This book is meant for the researcher, scientist, or engineer who uses mathemat- ical optimization, or more generally, computational mathematics. This includes, naturally, those working directly in optimization and operations research, and also many others who use optimization, in fields like computer science, economics, fi- nance, statistics, data mining, and many fields of science and engineering. Our primary focus is on the latter group, the potentialusersof convex optimization, and not the (less numerous) experts in the field of convex optimization. The only background required of the reader is a good knowledge of advanced calculus and linear algebra. If the reader has seen basic mathematical analysis (e.g., norms, convergence, elementary topology), and basic probabilitytheory, he or she should be able to follow every argument and discussion in the book. Wehope that

Prefacexiii

readers who have not seen analysis and probability, however, can still get all of the essential ideas and important points. Prior exposure to numericalcomputing or optimization is not needed, since we develop all of the needed material from these areas in the text or appendices.

Using this book in courses

We hope that this book will be useful as the primary or alternate textbook for several types of courses. Since 1995 we have been using drafts of this book for graduate courses on linear, nonlinear, and convex optimization (with engineering applications) at Stanford and UCLA. We are able to cover most of the material, though not in detail, in a one quarter graduate course. A one semester course allows for a more leisurely pace, more applications, more detailed treatment of theory, and perhaps a short student project. A two quarter sequence allows an expanded treatment of the more basic topics such as linear and quadratic programming(which are very useful for the applications oriented student), or a moresubstantial student project. This book can also be used as a reference or alternate text for a more traditional course on linear and nonlinear optimization, or a course on control systems (or other applications area), that includes some coverage of convex optimization. As the secondary text in a more theoretically oriented course on convex optimization, it can be used as a source of simple practical examples.

Acknowledgments

We have been developing the material for this book for almost a decade. Over the years we have benefited from feedback and suggestions from many people, including our own graduate students, students in our courses, and our colleagues at Stanford, UCLA, and elsewhere. Unfortunately, space limitations and shoddyrecord keeping do not allow us to name everyone who has contributed. However, wewish to particularly thank A. Aggarwal, V. Balakrishnan, A. Bernard, B. Bray, R. Cottle, A. d"Aspremont, J. Dahl, J. Dattorro, D. Donoho, J. Doyle, L. El Ghaoui, P. Glynn, M. Grant, A. Hansson, T. Hastie, A. Lewis, M. Lobo, Z.-Q. Luo, M. Mesbahi, W. Naylor, P. Parrilo, I. Pressman, R. Tibshirani, B. Van Roy, L. Xiao, and Y. Ye. J. Jalden and A. d"Aspremont contributed the time-frequency analysis example in§

6.5.4, and the consumer preference bounding example in§6.5.5, respectively.

P. Parrilo suggested exercises

4.4and4.56. Newer printings benefited greatly from

Igal Sason"s meticulous reading of the book.

We want to single out two others for special acknowledgment. Arkadi Ne- mirovski incited our original interest in convex optimization, and encouraged us to write this book. We also want to thank Kishan Baheti for playing a critical role in the development of this book. In 1994 he encouraged us to apply for a Na- tional Science Foundation combined research and curriculum development grant,quotesdbs_dbs33.pdfusesText_39
[PDF] fonction convexe plusieurs variables

[PDF] modélisation et simulation d'un moteur ? courant continu matlab

[PDF] modélisation mcc

[PDF] simulation mcc simulink

[PDF] asservissement et regulation de vitesse d'un moteur a courant continu

[PDF] modélisation d'un moteur ? courant continu

[PDF] equation differentielle moteur courant continu

[PDF] schéma bloc moteur ? courant continu

[PDF] commande pid d'un moteur ? courant continu pdf

[PDF] modélisation machine asynchrone simulink

[PDF] onduleur triphasé matlab

[PDF] cours de modélisation financière sous excel

[PDF] modélisation financière pdf

[PDF] fiche de lecture les misérables victor hugo pdf

[PDF] modélisation financière exemple