[PDF] Ch 1. Ensembles et dénombrement I. Ensembles II. Cardinaux





Previous PDF Next PDF



Calcul derreur (ou Propagation des incertitudes)

iii) La dispersion statistique apparaît lorsqu'on fait des mesures répétées de la même grandeur. Si l'on mesure plusieurs fois le même phénomène avec un.



Ch 1. Ensembles et dénombrement I. Ensembles II. Cardinaux

`a comparer aux fréquences observées sur 1000 observations. 41. III. Lois usuelles. 1) Loi de Bernoulli B(p). C' 



Projet final de la

Ch. III. Arithmétique dans Z (6 séances). Divisibilité dans Z. Division euclidienne. résistivité d'un conducteur - loi d'Ohm microscopique - résistance ...



Syllabus Licence Maths 2022/2023

récurrentes Suites arithmétiques



Filière Licence dEtudes Fondamentales Sciences Mathématiques et

Ch. III. Arithmétique dans Z (6 séances). Divisibilité dans Z. Division euclidienne. résistivité d'un conducteur - loi d'Ohm microscopique - résistance ...



Chapitre 3 - Distributions déchantillonnage

pop. Distribution de S2. Nous supposons ici que X suit une loi normale. On consid`ere la variable Y =.



Mathématiques appliquées

1.3 Somme de termes en progression arithmétique ou géométrique . La loi d'Ohm du nom du physicien allemand Georg Simon Ohm



Fiche mesures et incertitudes 1 Grandeurs valeurs et unités 2 Les

Exercice n° 6 : Grâce au montage adapté on souhaite vérifier la loi d'Ohm. Pour cela



HISTOIRE DES MATHÉMATIQUES

5.4.3 De l'arithmétique marchande à l'algèbre . les polynômes : en effet la loi xm · xn = xm+n à la base du calcul d'un produit de polynômes



Lévaluation de lincertitude de mesure et la méthode GUM

Les erreurs systématiques connues d'une mesure sont des grandeurs L'application de la loi statistique de Student permet de calculer le facteur.

Ch 1. Ensembles et d´enombrementI. EnsemblesD´efinition 1Un ensemble est une collection de choses

qu"on appelle´el´ements. L"ensemble vide est not´e∅. Dans la suite, on consid`erera toujours un ensemble universel Ω(on lit"grand om´ega"), et tous les ensembles consid´er´es seront des parties deΩ. On noteP(Ω)l"ensemble des parties deΩ. Exemple. D´efinition 2SoientAetBdeux ensembles. On d´efinit : -A?B, l"union deAetB, est l"ensemble des´el´ements qui sont dansAou dansBou dans les deux. -A∩B, l"intersection deAetB, est l"ensemble des´el´e- ments qui sont dansAet dansB. -A\B, la diff´erenceAmoinsB, est l"ensemble des´el´e- ments qui sont dansA, mais pas dansB. -AΔB, la diff´erence sym´etrique deAetB, l"ensemble des´el´ements qui sont soit dansAsoit dansB, mais pas dansA∩B. -Acou A, le compl´ementaire deA, l"ensemble des´el´e- ments qui ne sont pas dansA. 1 On repr´esente graphiquement, d´es que c"est possible, les ensembles grˆace`ades diagrammes de Venn.

Proposition 3Premi`eres relations :

- commutativit´e:A∩B=B∩A,A?B=B?A. - associativit´e:A∩(B∩C) = (A∩B)∩C=

A∩B∩C,A?(B?C) = (A?B)?C=A?B?C.

- distributivit´e:(A?B)∩C= (A∩C)?(B∩C),

A?(B∩C) = (A?B)∩(A?C).

-(A?B)c=Ac∩Bc,(A∩B)c=Ac?Bc

Proposition 4 (R`egles de De Morgan)

n? i=1A i? ∩B=n? i=1(Ai∩B) n? i=1A i? ?B=n? i=1(Ai?B) n? i=1A i? c=n? i=1Aci,? n? i=1A i? c=n? i=1Aci

D´efinition 5SoientAetBdeux ensembles. On pose

C={(a,b) :a?A,b?B}. On appelleCl"ensemble

produit deAetBet on le noteA×B. 2 (exemples, g´en´eralisation) v´erifie les deux conditions : -Ai∩Aj=∅pour tousi?=j n? i=1A i= Ω (exemples, g´en´eralisation) D´efinition 7SoitA?Ω. On d´efinit surΩla fonction indicatrice deA,1lA, par : ?ω?Ω,1lA(ω) =?1siω?A

0sinon

(exemple) 3

II. Cardinaux

D´efinition 8SoitAun ensemble fini. Le cardinal deA, not´e|A|, est le nombre d"´el´ements que contientA. (exemple)

Proposition 9Additivit´e

SoientAetBdeux ensembles finis, disjoints (c"est-`a-dire

A∩B=∅). Alors

|A?B|=|A|+|B|

Proposition 10Multiplicativit´e

SoientAetBdeux ensembles finis, etC=A×B. Alors

|C|=|A| · |B| (preuve)

Corollaire 11Principe du d´enombrement

On r´ealise deux exp´eriences qui peuvent produire respec- tivementnetmr´esultats diff´erents. Au total, pour les deux exp´eriences prises ensemble, il existen.mr´esultats possibles. Corollaire 12SoitAun ensemble fini de cardinaln. Le nombre de suites de longueurrconstitu´ees d"´el´ements de

Aestnr.

4

Proposition 13 (Inclusion-exclusion)SoientAetB

deux ensembles finis. |A?B|=|A|+|B| - |A∩B| Plus g´en´eralement, pournensembles finisA1,...,An, |A1? ··· ?An|=n? i=1|Ai| -? iIII. D´enombrement D´efinition 14SoitAun ensemble fini. Une permutation deAest une mani`ere d"ordonner, d"arranger les´el´ements deA. La formulation math´ematique est : une permutation deAest une bijection deAdansA. Th´eor`eme 15Il y an!permutations d"un ensemble de cardinaln. preuve : clair par le principe du d´enombrement.♣ exemple : combien existe-t-il d"anagrammes de PROBA? 5 Th´eor`eme 16Soientnobjets distinguables. Le nombre de permutations derobjets, pris parmi lesnobjets, est A r n=n! (n-r)! (on dit aussi arrangement derobjets pris parmin) preuve :pour la premi`ere place, il y anobjets possibles, pour la seconde,(n-1)objets possibles, pour la derni`ere,(n-r+ 1)objets possibles. Au total,n(n-1)...(n-r+ 1)possibilit´es, par le principe du d´enombrement.♣ Th´eor`eme 17Le nombre de mani`eres de choisirp´el´e- ments parmin(sans tenir compte de l"ordre) est n p?=n! p!(n-p)! Autrement dit, c"est le nombre de parties`ap´el´ements pris parmin´el´ements. On appelle parfois ces parties des combinaisons dep´el´ements pris parmin. preuve : on regarde le nombre de permutations de cesp ´el´ements et on obtientp!arrangements. Il y a doncp!fois plus d"arrangements que de combinaisons.♣ 6

Proposition 181)?n

p?=?n n-p? 2) ?n p?=?n-1 p?+?n-1 p-1?

3)(x+y)n=?np=0?n

p?xpyn-p Corollaire 19SoitΩun ensemble fini de cardinaln. Le cardinal deP(Ω)vaut2n. preuve : il existe 1 partie`a0´el´ement, il existenparties`a1´el´ement, il existe?n p?parties`ap´el´ements, il existe 1 partie`an´el´ements.

Finalement, le nombre total de parties est

n p=0? n p?=n? p=0? n p?1r1n-r= (1 + 1)n= 2n Th´eor`eme 20On consid`erenobjets, parmi lesquelsn1 sont indistinguables,...,nrsont aussi indistinguables. Le nombre de permutations diff´erentes estn! n1!···nr! exemple : combien d"anagrammes de STAT? 4!/2!=12 7 exemple :r´esultat du loto (6 num´eros). - mani`ere de voir 1 : on regarde en direct le tirage du loto et on obtient un arrangement de 6 nombres pris dans {1,...,49}. On a alorsω= (x1,...,x6): les 6 nom- bres sortis avec leur ordre d"arriv´ee. Quel est le nombre de tirages diff´erents? A 6

49= 49?48?47?46?45?44 = 10.068.347.520

Mais on peut gagner les 6 bons num´eros quel que soit l"or- dre de sortie des 6 num´eros... - mani`ere de voir 2 : on regarde les 6 nombres sortis sans s"occuper de l"ordre d"arriv´ee.On a alorsω={x1,...,x6}. D"o`uΩest l"ensemble des combinaisons de 6 nombres pris dans{1,...,49}.

Quel est le nombre de tirages diff´erents?

49

6?=49?48?47?46?45?44

6?5?4?3?2= 13.983.816

remarque :(1,2,3,4,5,6)?= (2,1,3,4,5,6), mais {1,2,3,4,5,6}={2,1,3,4,5,6} 8

Ch 2. Le mod`ele probabiliste

I. Ensemble fondamental et ´ev´ene-

ments D´efinition 21Une exp´erience al´eatoire est une action, une proc´edure, qui donne un r´esultat impr´evisible, mais dont on connaˆıt pr´ecis´ement l"ensemble des r´esultats pos- sibles. Cet ensemble, not´eΩ, est appel´eensemble fonda- mental ou univers ou ensemble des possibles.

Exemples :

- lancer d"un d´e. On observera un r´esultatk? {1,...,6}. - sondageaupr`es de 1000 utilisateursd"un t´el´ephoneportable.

On observera le nombre d"abonn´es`aorange.

- questionnaire`a100 r´eponses binaires. On observera des suitesωde 100 r´eponses prisesdans{0,1};ω? {0,1}100. - parcours d"un taxi. On observera une fonction continue (trajectoire). - mise en service d"un ordinateur. On observera sa dur´ee de fonctionnement qui appartient`aR+. 9 D´efinition 22Onappelle´ev´enement´el´ementairetout´el´e- mentωdeΩ. C"est un r´esultat possible de l"exp´erience al´eatoire. On appelle´ev´enement toute partie deΩ. Pour d´esigner des´ev´enements, on utilisera souvent des let- tres capitales du d´ebut de l"alphabet (A,B,...). Exemples : - on lance un d´e. AlorsΩ ={1,...,6}. L"´ev´enementA:"on obtient un chiffre pair"est consti- tu´edes trois´ev´enements´el´ementaires 2, 4 et 6. On a :

A={2,4,6}.

- on lance trois fois une pi`ece de monnaie. Il est bon que les´ev´enements´el´ementaires d´ecrivent le plus pr´ecis´ement possible le r´esultat de cette exp´erience. On choisit donc de d´ecrireωpar un triplet(r1,r2,r3)qui donne les r´esul- tats des trois lancers (dans l"ordre). L"´ev´enementB:"on obtient pile au deuxi`eme lancer"est

B={(f,p,f),(f,p,p),(p,p,f),(p,p,p)}

Il n"est parfois pas n´ecessaire de connaˆıtre tous ces d´etails. On pourra aussi choisir :ωrepr´esente le nombre de"face" obtenus. Alors,Ω ={0,1,2,3}. Le mod`ele est beau- coup plus simple, mais ne permet pas de d´ecrire des´ev´ene- ments tels queB. Et les calculs qui vont suivre ne sont pas forc´ement simples, eux. Il existe plusieurs mani`eres de mod´eliser l"ensemble fonda- mental. Le choix du mod`ele est un des aspects difficiles de ce cours. 10

Vocabulaire probabiliste

Nous allons manipuler des ensembles, mais en utilisant un vocabulaire propre aux probabilit´es. Si le r´esultatωde l"exp´erience al´eatoire appartient`aA, on dit queωr´ealiseA, ou queAest r´ealis´e. Ainsi,Ω, qui est toujours r´ealis´e, est appel´e ´ev´enement certain. Et∅, qui n"est jamais r´ealis´e, est appel´e ´ev´enement impossible.

SiAetBsont deux´ev´enements,

-A?Bse dit"AimpliqueB"(car siAest r´ealis´e,B aussi), -A?Bse dit"AouB"(car siA?Best r´ealis´e,Aou

Best r´ealis´e),

-A∩Bse dit"AetB", -Acest l"´ev´enement contraire deA, -A∩B=∅se dit"AetBsont incompatibles", ou encore disjoints. Exemple : On lance un d´e. On poseΩ ={1,...,6}. Soit Al"´ev´enement"on obtient un chiffre pair". Le contraire de A,Ac, est l"´ev´enement"on obtient un chiffre impair". 11

II. Probabilit´es

Pensez`aquelques phrases de la vie courante qui conti- ennent le mot"probabilit´e". On constate qu"on parle tou- jours de la probabilit´ed"un´ev´enement. Consid´erons donc un´ev´enementA. Que repr´esente la probabilit´edeA, not´ee

P(A)? Il existe plusieurs mani`eres de voir.

- Proportion : On lance un d´e. Quelle est la probabilit´edeA="obtenir un chiffre pair"? Chaque face du d´ea la mˆeme chance, et il y en a 6. Quant aux chiffres pairs, ils sont 3. D"o`u, intuitivement,P(A) =3

6= 1/2.

- Fr´equence : On lance une pi`ece de monnaie. Quelle est la probabilit´e d"obtenir FACE? On lance une pi`ece un grand nombre de fois. Notonsknle nombre de FACE obtenus en lan¸cantn fois la pi`ece. Alors

P(FACE) = limn→+∞k

n n - Opinion : Quelle est la probabilit´epour que les´etudiants votent au second tour des pr´esidentielles? Quelle est la probabilit´e pour que l"´equipe de Montceau gagne la coupe? pour que l"OL soit championne de France? 12 D´efinition 23Soit une exp´erience al´eatoire etΩl"espace des possibles associ´e. Une probabilit´esurΩest une appli- cation, d´efinie sur l"ensemble des´ev´enements, qui v´erifie : - axiome 2 : pour toute suite d"´ev´enements(Ai)i?N, deux `adeux incompatibles, P i?NA i? i?NP(Ai) - axiome 3 :P(Ω) = 1 Remarque : les´ev´enements(Ai)i?Nsont deux`adeux in- compatibles, si pour tousi?=j,Ai∩Aj=∅. D´efinition 24Soit une exp´erience al´eatoire mod´elis´ee par un espace des possiblesΩet une probabilit´eP. On appelle le couple(Ω,P)un espace de probabilit´e. Corollaire 25SiΩest d´enombrable (c"est-`a-dire fini ou en bijection avecN), on peut num´eroter les´ev´enements ´el´ementairesω1,ω2,.... Les´ev´enements´el´ementaires sont deux`adeux incompatibles, et pour tout´ev´enementA, on peut´ecrireA=?ω?A{ω}et, d"apr`es le deuxi`eme ax- iome,

P(A) =?

ω?AP(ω)

13 Que signifie"un´ev´enementAa pour probabilit´e..."?

0.95 :Ava tr`es probablement se produire.

0.03 :Aa tr`es peu de chance d"ˆetre r´ealis´e.

4.0 : incorrect.

-2 : incorrect.

0.4 :Ava se produire dans un peu moins de la moiti´edes

essais.

0.5 : une chance sur deux.

0 : aucune chance queAsoit r´ealis´e.

Proposition 26SoientAetBdeux´ev´enements.

1) SiAetBsont incompatibles,

P(A?B) =P(A) +P(B).

2)P(Ac) = 1-P(A).

3)P(∅) = 0.

5)P(A?B) =P(A) +P(B)-P(A∩B).

(preuve) 14 Exemple :Trois´ev´enementsA,BetCsont repr´esent´es sur ce diagramme.

Calculons

-P(A) -P(B∩Cc) -P(A?B) - la probabilit´epour que`ala foisBetCsoient r´ealis´es -Cest r´ealis´e, mais pasB - exactement l"un des trois´ev´enements est r´ealis´e. 15

III. La probabilit´e uniforme

D´efinition 27Consid´erons une exp´erience al´eatoire, dont l"ensemble fondamentalΩest fini, et telle que chaque ´ev´enement´el´ementaire a la mˆeme probabilit´e. On parle, dans ce cas, d"´ev´enements´el´ementaires´equiprobables. No- tonspla probabilit´ecommune des´ev´enements´el´emen-quotesdbs_dbs24.pdfusesText_30
[PDF] CH III) Puissance

[PDF] CH INFO avril 2011 - Centre Hospitalier de DIGNE LES BAINS

[PDF] CH INFO juillet aout 2012 - Centre Hospitalier de DIGNE LES BAINS - France

[PDF] CH IV) Courant alternatif – Oscilloscope.

[PDF] CH Jacques Coeur de Bourges - Santé Et Remise En Forme

[PDF] CH LE MANS Droit public

[PDF] Ch Reg. N° 81 : Havel Jérémie - Joer Clara Toulouse Rock

[PDF] CH Sud Francilien

[PDF] CH VI : Équilibre d`un solide soumis à 3 forces.

[PDF] ch$ edouard toulouse, mais ou est donc passe le s

[PDF] CH, JP - Grundfos

[PDF] CH-3003 Berne, OFROU

[PDF] CH-IQI - Bundesamt für Gesundheit - Italie

[PDF] CH-M-YH-CCI2

[PDF] CH-O1 LOIS DES RESEAUX EN REGIME CONTINU - Arithmétique