[PDF] [PDF] Sommes - Pascal Ortiz

égale à n + 1 — Que la somme Dans les exemples précédents, les indices des termes sommés prennent toutes les valeurs en- tières entre 1 n=1000 2 S =sum(1/k**2 for k in range(1,n+1)) 3 4 print(S) Sommes multiples Pour calculer  



Previous PDF Next PDF





[PDF] IE1 nombres relatifs

Quelle est la somme de 503 termes égaux à +2 ? : Exercice 4 : 2 points Calculer en regroupant les facteurs de façon astucieuse (faire apparaître les 



[PDF] Devoir corrigé - Maths974

La somme des angles d'un triangle est égale à 180° donc SRT = 180–51 - 39 = 90 Calculer la somme S de 1000 termes égaux à (-1) 2 Calculer le produit P 



[PDF] Calcul Algébrique

se lit « somme pour k allant de zéro à cinq de deux puissance k » C'est une notation abrégée est une permutation des entiers de 1 à n + 1 dont le k-ième terme est n + 1 En appliquant nombre de produits égaux à akbn−k est le nombre de combinaisons de k facteurs parmi n, soit (n 0 0 2 10 50 1000 1 1 6 30 150 



[PDF] Sommes - Pascal Ortiz

égale à n + 1 — Que la somme Dans les exemples précédents, les indices des termes sommés prennent toutes les valeurs en- tières entre 1 n=1000 2 S =sum(1/k**2 for k in range(1,n+1)) 3 4 print(S) Sommes multiples Pour calculer  



[PDF] Exo7 - Exercices de mathématiques

146 220 05 Calcul de la somme d'une série entière Soient f,g deux fonctions de R dans R Traduire en termes de quantificateurs les expressions suivantes : que 106n+2 + 103n+1 + 1 est divisible par 111 quel que soit n ∈ N (Indication : 1000 = (c) En déduire que, pour tout entier naturel n supérieur ou égal à 2, on a



[PDF] Addition et soustraction

terme 8,7 terme somme =13,2 somme peut se traduire de différentes façons : • « La somme de 4,5 et 8,7 est égale à 13,2 » 10 , 100 ou 1000 )



[PDF] Modèle mathématique Ne pas hésiter à consulter le fichier daide

4 et 5 sont les termes de la somme • 18 – 4 est une différence 30 + 50 = 1000 × 10 = 80 10000 x tel que la somme de son double et de 3 soit égale à 24



[PDF] Langage mathématique

La définition et la compréhension des termes utilisés faciliteront la bonne application des L'unité de mille (1 000) : mille (groupe de 1000 unités ou de 10 centaines) 7 La dizaine de Le diamètre est égal à la somme de 2 rayons • Tous les 



[PDF] Calcul mental - Mathématiques du consommateur

En ajoutant aux deux termes, on équilibre la soustraction 1 2 Lorsqu'on ajoute le La somme des angles intérieurs d'un triangle est égale à ___ Dessine un 



[PDF] suites numeriques

2 2 2 corrigé activité : somme des premiers termes constante et reste égale à un nombre noté r et appelé raison de la suite en 2006, une personne place un capital C0 = 1000 euros à t = 3 d'intérêts simples annuels

[PDF] la somme de 2014 termes égaux ? -1

[PDF] La somme de deux entiers pairs est paire SVP

[PDF] la somme de deux multiples de 3 est toujours un multiple de 3

[PDF] La somme de deux nb entiers est 24 L'un des nb est le double de l'autre Quels

[PDF] la somme de deux nombres décimaux est 24

[PDF] La somme de deux nombres entiers est 24 L'un des nombres est le double de l'autre Quels sont ces deux nombres

[PDF] la somme de deux nombres relatifs

[PDF] La somme de deux produits

[PDF] la somme de trois entiers consécutifs est divisible par 3

[PDF] la somme de trois entiers consécutifs est un multiple de 3

[PDF] la somme de trois nombres consécutifs est 24 trouver ces trois nombres

[PDF] la somme de trois nombres consécutifs est 75 quels sont ces trois nombres

[PDF] La somme des carré est egale a 15313

[PDF] La somme des mesures de l'angle

[PDF] la somme du produit

Pascal ORTIZ

Sommes

Éléments de cours, 61 exercices

Version du 1

eroctobre 2018

Licence CC-BY

Table des matières

1 Présentation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Découverte de la notion de somme

. . . . . . . . . . . . . . . . . . . . . 2

Dé?nition formelle d"une somme

. . . . . . . . . . . . . . . . . . . . . . 2

Indice muet

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Déployer une somme

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 La somme1 + 2 + 3 ++n. . . . . . . . . . . . . . . . . . . . . . . 4

Extensions de la dé?nition

. . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Sommes remarquables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Sommes des termes d"une suite géométrique

. . . . . . . . . . . . . . . 5

La factorielle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Le coe?cient binomial

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Le triangle de Pascal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Formule du binôme de Newton

. . . . . . . . . . . . . . . . . . . . . . . 11 Conséquences classiques de la formule du binôme . . . . . . . . . . . . 12

Somme des puissances d"entiers consécutifs

. . . . . . . . . . . . . . . . 13

3 Propriétés des sommes

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Découpage d"une somme

. . . . . . . . . . . . . . . . . . . . . . . . . . 13

Somme d"une expression constante

. . . . . . . . . . . . . . . . . . . . . 14

Nombre de termes dans une somme

. . . . . . . . . . . . . . . . . . . . 14

Linéarité de la sommation

. . . . . . . . . . . . . . . . . . . . . . . . . . 15

Changement d"indice dans une somme

. . . . . . . . . . . . . . . . . . . 15

Notion de télescopage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Sommes multiples

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Sommes emboîtées

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Théorème de Fubini

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Interversion plus générale

. . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Sommes et programmation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Calculer des sommes en Python

. . . . . . . . . . . . . . . . . . . . . . . 20

Calcul de sommes formelles avec SageMath

. . . . . . . . . . . . . . . . 21

6 En vrac ...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Importance des sommes en mathématiques

. . . . . . . . . . . . . . . . 22

Somme vide

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 iindice et{complexe. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Indice muet et double somme

. . . . . . . . . . . . . . . . . . . . . . . . 23

Télescopage sans déploiement

. . . . . . . . . . . . . . . . . . . . . . . . 24

Homogénéiser par décalage d"indice

. . . . . . . . . . . . . . . . . . . . 25

Réduction après changement d"indice

. . . . . . . . . . . . . . . . . . . 25 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1Présentation

Découverte de la notion de somme

est une lettre grecque majuscule, équivalente à notre S. Le symboleest une notation utilisée

pour désigner dessommesmathématiques.

Soit la quantité suivante

S=8X i=4(10i+ 2) Alors, cette notation doit se comprendre de la manière suivante :Svaut lasommede tous les nombres de la forme

10i+ 2

lorsque l"indiceiprend toute les valeurs entières entre 4 et 8, ces deux valeurs étant incluses.

Le calcul donne queS= 310. Le tableau suivant montre comment calculerS:i45678

10i+ 24252627282

Somme4294156228310

Dé?nition formelle d"une somme

Soit une suite(xk)kde nombres réels ou complexes dé?nie entre deux indices ?xésietjtels queij.

Alors, par dé?nition,

j X k=ix k=xi+xi+1+xi+2++xj

Variante de notation :

X ikjx k=xi+xi+1++xj

et plus généralement, si on apindices deux à deux distinctsi1;i2;:::;ipdansfi;:::;jget si on

poseK=fi1;i2;:::;ipgalors on peut dé?nir S=X k2Kx k=xi1+xi2++xip et siKest vide, on convient queS= 0.

Remarque.J"éviterai de dé?nir une sommeS=iX

k=jx koù on auraiti < jcar ce serait ambigu à cause de deux interprétations incompatibles suivantes : 2 -une somme ne dép endantpas de l" ordredes termes, on aurait S=jX k=ix k les indices de la somme par courraientl" ensemblefk;jkigqui est l"ensemble vide et doncS= 0

Indice muet

La somme

S=10X k=1(2k1)

est une constante qui NE dépend PAS dek. La lettreksert juste à exprimer la quantité variable

lorsque l"on somme. D"ailleurs, la somme vaut 100 :

S= 1 + 3 + 5 ++ 19 = 100

et donc elle ne dépend pas dek. On dit quekest unelettre muetteou unevariable muetteet on peut remplacerkpar n"importe quelle lettre non déjà utilisée, par exemple icij: 10 X k=1k=10X j=1j

En revanche, sin0est un entier donné, la somme

n X k=1k= 1 + 2 ++n dépend de la valeur denpuisqu"on obtient des valeurs di?érentes selon quenvaut par exemple

2 ou 5. Donc on peut noter cette sommeSn.

Si au cours d"un calcul, vous vous retrouvez avec une somme qui dépend d"un indice de som- mation, c"est que vous avez fait une erreur quelque part. Par exemple, si vous arrivez à p X n=1n=n(n+ 1)2

votre résultat est absurde puisque votre réponse dépend denqui est l"indice de la somme (et qui

n"a pas d"autre existence en dehors de permettre le calcul de la somme).

Déployer une somme

Quand je parlerai dedéployer une sommecela signi?era qu"on récrit une somme initialement présentée avec le symbole sigma nP k=1x ksous sa forme sans sigma x

1+x2++xn

3

Lorsque

les te chniquesde transformations de sommes ne sont pas bien comprises, le formalisme de vientinutilement compliqué , il est plus simple ou plus productif de revenir à la dé?nition d"une somme avec des points de suspension.

La somme1 + 2 + 3 ++n

Soitn2Nn f0g. On peut considérer la somme

S n=nX k=1k= 1 + 2 + 3 ++n Il s"agit donc de la somme desnpremiers entiers strictement positifs. A priori, il n"est pas acquis queSnpuisse se simpli?er en une formule simple. Pourtant, on peut réduireSnavec la formule suivante : n X k=1=n(n+ 1)2

Cette formule peut s"établir de nombreuses façons. Elle a contribué à la légende du mathémati-

cien Gauss qui aurait découvert et appliqué cette formule au casn= 100alors qu"il était encore

à l"école primaire, comme c"est raconté dans sa biographie On peut en établir la preuve par récurrence surnmais cette preuve n"explique pas l"origine de la formule.

Une autre façon de faire est la suivante :

S n= 1 + 2 + 3 +:::+ (n1) +n S n=n+ (n1) + (n2) +:::+ 2 + 12Sn= (n+ 1) + (n+ 1) + (n+ 1) +:::+ (n+ 1) + (n+ 1)

2Sn=n(n+ 1)

S n=n(n+ 1)2

Commentaires

On é critSntermes à termes, puis en-dessous, on écritSntermes à termes mais en commen-

çant par la ?n.

On constate alors que la somme de deux termes l"un en-dessous de l"autr eest constante et

égale àn+ 1.

Que la somme soit constante est justi?é epar le fait que les termes dans la pr emièresomme augmentent de 1 tandis que dans la 2 esomme, les termes diminuent de 1 d"où compensation quand on les additionne.

En?n, à l"avant-dernièr eligne et à la pré cédente,la somme dans le membr ede dr oitecontient

ntermes, d"où la valeurn(n+ 1). 4

Extensions de la dé?nition

Dans les exemples précédents, les indices des termes sommés prennent toutes les valeurs en-

tières entre deux bornes mais il est possible de restreindre la somme à des indices véri?ant une

condition. Par exemple, la notation 5 X i=0ipair(10i+ 2)

désigne la somme2 + 22 + 42où l"indice ne prend que les valeurs paires entre 0 et 5, à savoir

0, 2 ou 4.

Autre exemple. La somme

S=X

02k+110k

2 est e?ectuée pour tous les indiceskentiers tels que02k+ 110autrement dit pour k= 0;:::;4en sorte queS= 02+ 12+ 22+ 32+ 42= 0 + 1 + 4 + 9 + 16 = 30.

Autre extension de la définition

quotesdbs_dbs13.pdfusesText_19