[PDF] [PDF] Calcul dun intervalle de confiance pour la moyenne dans une

n(X − µ)/s : est un pivot utilisé pour construire un intervalle de confiance pour µ – tn−1,α/2 : dénote le quantile supérieur d'ordre α/2 de la loi de student t avec 



Previous PDF Next PDF





[PDF] Estimations et intervalles de confiance - Institut de Mathématiques

mations : intervalle de confiance d'une proportion, d'une moyenne si la variance qui ne suit plus une loi normale mais une loi dite de Student à n − 1 degrés



[PDF] Quelques rappels sur les intervalles de confiance - Cedric-Cnam

Les bornes de l'intervalle de confiance IC dépendent de l'échantillon, elles sont Remarque : quand n → ∞ , on approxime la loi de Student par la loi normale 



[PDF] MODULE 2 : Estimation par intervalle de confiance - FOAD - MOOC

Il s'agit dans ce module de trouver une estimation par intervalle de confiance d' un paramètre θ, c'est-à-dire Lorsque σ est inconnu, on utilise la loi de Student



[PDF] Calcul dun intervalle de confiance pour la moyenne dans une

n(X − µ)/s : est un pivot utilisé pour construire un intervalle de confiance pour µ – tn−1,α/2 : dénote le quantile supérieur d'ordre α/2 de la loi de student t avec 



[PDF] Statistiques

2 5 2 Loi de Student 3 4 Intervalles de confiance L'intervalle de confiance de la variance σ2 se calcule `a partir de l'échantillon de taille n par IC1−α(σ2) 



[PDF] Statistique : étude de cas Intervalles de confiance - Université de

6 oct 2017 · intervalle de confiance de θ ou une estimation ensembliste de θ o`u tn-1;1-(α/ 2) est le quantile d'ordre 1 − (α/2) pour la loi de Student `a



[PDF] T D n 5 Intervalles de confiance Corrigé

50 49 = 40 816 D'où sc ≃ 202 3 La variance de la population étant estimée, on utilise la loi de Student



[PDF] : tdr27 ————— Intervalles de Confiance —————

975 sont respectivement les quantiles 2 5 et 97 5 de la loi de Student `a n − 1 degrés de liberté (cf tdr21) Prenons le cas d'un échantillon de taille n = 10 Le  

[PDF] intervalle de confiance d'une moyenne excel

[PDF] unité commerciale définition

[PDF] climat définition cycle 3

[PDF] definition de meteorologie

[PDF] unité commerciale physique et virtuelle complémentaire

[PDF] definition meteo

[PDF] dispense cap petite enfance

[PDF] deaes

[PDF] formule variance

[PDF] problème du second degré seconde

[PDF] bpjeps

[PDF] moyenne nationale bac francais 2017

[PDF] moyenne nationale math bac s

[PDF] moyenne nationale bac philo 2015

[PDF] moyenne nationale bac physique 2016

MOHAMED RIDHA TEKAYA

Calcul d'un intervalle de con¯ance pour la moyenne dans le cadre du programme de ma^³trise en statistique pour l'obtention du grade de Ma^³tre µes sciences (M.Sc.)

FACULT

Avril 2006

c

°Mohamed Ridha Tekaya, 2006

Cet essai a pour objectif de calculer un intervalle de con¯ance pour la moyenne¹µa d'un intervalle de con¯ance.

Avant-propos

Je tiens µa remercier Monsieur Louis-Paul Rivest, mon directeur de recherche, pro- direction, et ses conseils judicieux tout au long de cette recherche. Finalement, je voudrais exprimer la profonde gratitude que j'ai envers mes parents, mes deux s¾urs et mon frµere pour leurs encouragements et leur soutien.

Table des matiµeres

ii

Avant-Propos

iii

Table des matiµeres

v

Liste des tableaux

vi

Table des ¯gures

vii

1 Introduction

1

2 Calcul d'intervalle de con¯ance pour une moyenne

2

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 3

2.3 Approche modµele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 12

3 La vraisemblance empirique

13 13

3.2 Intervalle de con¯ance pour¹. . . . . . . . . . . . . . . . . . . . . . .

15 19 3.4 22

3.5 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24
26
26
29

4.3 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

5 Conclusion

32

Bibliographie

33
v simple 34

B Macro SAS

36

C Le programme R pour l'exemple 2.1

40

D Le programme R pour l'exemple 2.2

41

E Le programme R pour l'exemple 3.1

44
46

Liste des tableaux

con¯ance ( 2:2 2:3 ) avec ¹= 1 etn= 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 non couverture de l'intervalle de con¯ance ( 2:5 de l'exemple 2.2 avecn= 40 . . . . . . . . . . . . . . . . . . . . . . . . 12 con¯ance ( 3:7 23
24
m= 60 etn= 140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table des ¯gures

5 du quantile deÂ20:95;1pour l'exemple 2:2:avecn= 40 etp= 3=4 = 1=¸ 11

Chapitre 1

Introduction

L'objectif principal de ce travail de recherche est le calcul d'un intervalle de con¯ance µa propos des paramµetres d'un modµele statistique. L'annexe A donne une fonction R qui calcule les bornes d'un intervalle de con¯ance centrale. seulement µa des variables prenant des valeurs positives ou nulles.

Chapitre 2

Calcul d'intervalle de con¯ance

pour une moyenne

2.1 Notation

moyenne¹et de variance¾2 IC : est un acronyme pour Intervalle de Con¯ance. IC IC IC IC empirique. X=1 n P n s 2=1 n¡1P n i=1(Xi¡ T=p n( pour¹. t z Elle augmente le niveau d'information par rapport µa une estimation ponctuelle. Elle permet d'avoir un aper»cu des valeurs possibles pour¹. Un intervalle de con¯ance si pour chacun on calcule l'intervalle de con¯ance, alors dans 100(1¡®)% des cas le paramµetre¹devrait ^etre dans l'intervalle de con¯ance. Nous envisageons ici deux cas de calcul d'intervalle de con¯ance pour¹, nest quelconque. Si issu de la loiN(¹;¾2), une distribution normale de moyenne¹et de variance¾2, alors T=

X¡¹

s= p n bornes de l'intervalle de con¯ance µa 100(1¡®)% pour¹sont obtenues µa partir de

1¡®=Ph

¡tn¡1;®=2·

X¡¹

s= p n

·tn¡1;®=2i

=Ph

X¡tn¡1;®=2s

p n

X+tn¡1;®=2s

p n i IC ts=h

X¡tn¡1;®=2s

p n

X+tn¡1;®=2s

p n i on obtient

X¡¹

p n

»N(0;1):

montre que la distribution asymptotique lorsquentends vers1est T=

X¡¹

s= p n

»N(0;1):

(2.1)

1¡®=Ph

¡z®=2·

X¡¹

s= p n

·z®=2i

=Ph

X¡z®=2s

p n

X+z®=2s

p n i

On obtient l'intervalle de con¯ance suivant

IC tlc=h

X¡z®=2s

p n

X+z®=2s

p n i (2.2) Chapitre 2. Calcul d'intervalle de con¯ance pour une moyenne5€€

Quantiles of Standard Normal

valeur de t -3 -2 -1 0 1 2 3 -4 -2 0 2

Fig.2.1 {

Exemple 2.1.(Distribution deT)

f(x) =( pexp(¡x=¸) six >0

1¡psix= 0:

(2.3) Chapitre 2. Calcul d'intervalle de con¯ance pour une moyenne6

Y»Bernoulli(p))(

P[Y= 1] =p

E[Y] =p:

Z»Exponentielle(1=¸))n

E[Z] =¸:

2:1 ), nous faisons 2:3

A la lumiµere de la ¯gure

2.1 2:1 ) n'est dans le tableau 2.1 2:2quotesdbs_dbs35.pdfusesText_40