[PDF] [PDF] SUITES ARITHMETIQUES ET SUITES - maths et tiques

Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18 Une telle suite est appelée une suite arithmétique de raison 



Previous PDF Next PDF





[PDF] SUITES ARITHMETIQUES ET SUITES - maths et tiques

Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18 Une telle suite est appelée une suite arithmétique de raison 



[PDF] Suites - Exo7 - Cours de mathématiques

Une suite (un)n∈ est convergente si elle admet une limite finie Elle est divergente sinon (c'est-à-dire soit la suite tend vers ±∞, soit elle n'admet pas de limite) 



[PDF] FICHE DE RÉVISION DU BAC - Studyrama

Programme selon les sections : - notion de suite, représentation graphique, suites arithmétiques, suites géométriques : toutes sections - somme de termes 



[PDF] Cours sur les suites - Serveur Pédagogique de lUPMC

5) Toute suite convergente est bornée 6) Suites monotones bornées 7) Exemple des suites récurrentes: un+1 = f(un), o`u f est croissante 8) Limites infinies



[PDF] Suites - Licence de mathématiques Lyon 1

Montrer que la suite est monotone En déduire que la suite est convergente 4 Déterminer la limite de la suite ( ) ≥0 Allez à : Correction exercice 1 :



[PDF] Suites numériques

8 nov 2011 · Université Joseph Fourier, Grenoble Maths en Ligne Suites numériques Bernard Ycart Vous savez déjà étudier une suite et calculer sa limite 



[PDF] Cours 5: Une introduction aux suites numériques - Institut de

Une suite est la donnée d'une série de nombres dans un ordre précis En général, on note u0 le premier terme de la suite,u1 le deuxième, u2 le troisième, etc



[PDF] Cours I : SUITES NUMERIQUES I Quelques rappels

Définition : Une suite un est dite explicite s'il est possible de calculer directement un à partir de n On note alors un = g n avec g une fonction définie sur ℕ 



[PDF] Cours Suites MPSI - Optimal Sup Spé

Soit u une suite réelle u est une suite convergente si : SER, Ve > 0, Enge N, Vn 2 no, un-el



[PDF] Chapitre 1 : Les suites

Remarque : Une telle expression permet de calculer n'importe quel terme de la suite Page 2 Chapitre 1 : Les suites Terminale STI2D 2 SAES Guillaume

[PDF] Les Suite 1er

[PDF] Les suite géométrique

[PDF] Les suite numériques

[PDF] les suiteessss help meeeeee !!!!!!!!!!!!!!!!!!!!!!!!!!!

[PDF] Les suites

[PDF] Les suites

[PDF] Les suites

[PDF] Les suites

[PDF] les suites

[PDF] les suites

[PDF] Les Suites !

[PDF] Les suites ( arithmétiques et géométriques )

[PDF] les suites (besoin d'une correction)

[PDF] Les suites (Par récurrence)

[PDF] les suites (petit question rapide)

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés. u n =5-4n

0,5r=-

0 4u= 1nn uur 1 0,5 nn uu 0n uunr =+40,5 n un=-

0,50r=-<

4

II. Suites géométriques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u 0 = 5, u 1 = 10, u 2 = 20, u 3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La est donc définie par : .

Vidéo https://youtu.be/WTmdtbQpa0c

Définition : Une suite (u

n ) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a : .

Le nombre q est appelé raison de la suite.

Méthode : Démontrer si une suite est géométrique

Vidéo https://youtu.be/YPbEHxuMaeQ

La suite (u

n ) définie par : est-elle géométrique ? Le rapport entre un terme et son précédent reste constant et égal à 5. (u n ) est une suite géométrique de raison 5 et de premier terme .

Exemple concret :

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04.

On a ainsi :

De manière générale : avec

On peut également exprimer u

n en fonction de n :

Propriété : (u

n ) est une suite géométrique de raison q et de premier terme u 0

Pour tout entier naturel n, on a : .

0 1 5 2 nn u uu 1nn uqu =´35 n n u=´ 11 1 1 355
55
355
nn nn n nn n u u u 0 =3×5 0 =3 1

1,04500520u=´=

2

1,04520540,80u=´=

3quotesdbs_dbs46.pdfusesText_46