[PDF] [PDF] Géométrie dans lespace - Lycée dAdultes

26 jui 2013 · 1 TERMINALE S le parallélisme : deux droites parallèles sont représentées par des droites paral- Si ces deux plans 乡1 et 乡2 sont sécants en une droite ∆, alors la droite 2) Montrer que A, B, C et D sont coplanaires



Previous PDF Next PDF





[PDF] Chapitre 13 Droites, plans et vecteurs de lespace - Maths-francefr

Si 3 et 3′ sont deux droites sécantes de l'espace, il existe un plan et un seul Démontrer que la droite (IJ) est sécante au plan (BCD) et construire le point de plan sont beaucoup moins utilisées dans la pratique de terminale S que les 



[PDF] DROITES ET PLANS DE LESPACE - maths et tiques

Propriété : Deux droites de l'espace sont soit coplanaires (dans un même plan) soit Propriété : Deux plans de l'espace sont soit sécants soit parallèles P1 et P2 sont sécants Méthode : Démontrer que des droites sont orthogonales



[PDF] Droites et plans dans lespace

5 3 droites coplanaires rappel Deux droites sont coplanaires si et seulement si elle sont parallèles ou sécantes Pour montrer que deux droites ne sont pas 



[PDF] Méthode pour démontrer en géométrie dans lespace 1) Incidence

droites →Pour démontrer que deux droites sont parallèles ou sécantes, il faut d' abord montrer qu'elles sont coplanaires Il s'agit de trouver un plan contenant 



[PDF] Quelques méthodes de géométrie dans lespace :

Pour montrer que deux droites (AB) et (CD) sont parallèles: Pour montrer qu' elles ne sont pas sécantes : On résout les équations x=x, y=y et z=z, on obtient



[PDF] Correction Devoir maison n˚12 EXERCICE 1 1 Montrons que les

Montrons que les droites ne sont pas coplanaires, pour cela nous allons montrer que les deux droites sont ni sécantes ni parallèles • Un vecteur directeur de (D1)  



[PDF] Géométrie dans lespace - Lycée dAdultes

26 jui 2013 · 1 TERMINALE S le parallélisme : deux droites parallèles sont représentées par des droites paral- Si ces deux plans 乡1 et 乡2 sont sécants en une droite ∆, alors la droite 2) Montrer que A, B, C et D sont coplanaires



[PDF] Espace, droites, plans et vecteurs - cours de maths en terminale S

Deux plans de l'espace sont soit sécants (leur intersection est une droite), soit Il s'agit de démontrer que trois vecteurs sont coplanaires en écrivant l'un en 



[PDF] Chapitre 11 : Géométrie vectorielle dans lespace

Terminale S 1 SAES Guillaume ou sécantes Remarque : Deux droites coplanaire sont deux droites appartenant à un même plan Deux plans de l' espace sont soit sécants suivant une droite, soit parallèles Plans sécants Cette remarque permet de démontrer le théorème du toit énoncé précédemment Propriété 2 :



[PDF] DROITES, PLANS ET VECTEURS DE LESPACE

Chapitre 11 Droites, plans et vecteurs de l'espace Terminale S Supposons que P1 et P2 sont sécants et soit d la droite d'intersection de ces deux plans

[PDF] montrer que deux droites sont sécantes vecteurs

[PDF] Montrer que deux segments sont de même longueur

[PDF] montrer que deux systèmes agricoles s'opposent au brésil

[PDF] montrer que deux vecteurs sont colinéaires

[PDF] montrer que deux vecteurs sont colinéaires dans l'espace

[PDF] Montrer que droite droite sont concourantes

[PDF] montrer que f est une densité de probabilité

[PDF] Montrer que f(x) =

[PDF] montrer que ga+gb+gc = 0

[PDF] Montrer que l'ecologie est un retoure en arriere ! Besoin d'aide Svp :D

[PDF] montrer que l'émancipation des femmes passe par l'éducation qui leur est donné dans leur famille et ? l'école

[PDF] Montrer que l'incipit de Voyage Au Bout De La Nuit fait l'objet d'une mise en forme poétique

[PDF] montrer que l'inégale développement de l'Inde est aussi spatial

[PDF] montrer que l'activité sportive contribue ? la lutte contre l obésité

[PDF] montrer que l'eau est un bien economique

DERNIÈRE IMPRESSION LE26 juin 2013 à 15:11

Géométrie dans l"espace

Table des matières

1 Droites et plans2

1.1 Perspective cavalière. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Le plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Relations entre droites et plans. . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Relations entre deux droites. . . . . . . . . . . . . . . . . . . 3

1.3.2 Relations entre une droite et un plan. . . . . . . . . . . . . . 3

1.3.3 Relation entre deux plans. . . . . . . . . . . . . . . . . . . . 3

1.4 Le parallélisme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Parallélisme d"une droite et d"un plan. . . . . . . . . . . . . 4

1.4.2 Parallélisme de deux plans. . . . . . . . . . . . . . . . . . . 5

1.5 Section d"un cube et d"un tétraèdre par un plan. . . . . . . . . . . . 5

1.5.1 Section d"un cube par un plan. . . . . . . . . . . . . . . . . 5

1.5.2 Section d"un tétraèdre par un plan. . . . . . . . . . . . . . . 6

1.6 L"orthogonalité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Droites orthogonales. . . . . . . . . . . . . . . . . . . . . . . 7

1.6.2 Orthogonalité entre une droite et un plan. . . . . . . . . . . 7

1.6.3 Exemple d"application. . . . . . . . . . . . . . . . . . . . . . 8

2 Géométrie vectorielle9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Vecteurs coplanaires. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Le théorème du toit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Repérage dans l"espace. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Représentation paramétrique d"une droite. . . . . . . . . . . . . . . 13

2.6.1 Théorème. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.3 Représentation paramétrique d"un plan. . . . . . . . . . . . 15

3 Produit scalaire16

3.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Propriétés et orthogonalité dans l"espace. . . . . . . . . . . . . . . . 18

3.3 Équation cartésienne d"un plan. . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Vecteur normal. Droite orthogonale à un plan. . . . . . . . 19

3.3.2 Plans perpendiculaires. . . . . . . . . . . . . . . . . . . . . . 20

3.4 Équation d"un plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Exercice de BAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

PAULMILAN1 TERMINALES

1 DROITES ET PLANS

1 Droites et plans

1.1 Perspective cavalière

Définition 1 :Laperspective cavalièreest une manière de représenter en deux dimensions des objets en volume. Cette représentation ne présente pas de point de fuite : la taille des objetsne diminue pas lorsqu"ils s"éloignent.

Dans cette perspective, deux des axes sont

orthogonaux (vue de face en vraie grandeur) et le troisième axe est incliné d"un angleα compris en général entre 30 et 60°par rap- port à l"horizontale, appelé "angle de fuite".

Les mesures sur cet axe sont multipliées par

un facteur de réductionkcompris en général entre 0,5 à 0,7.

Cette perspective ne donne qu"une indica-

tion sur la profondeur de l"objet. A BC DE F G H fuyante ← ×kα représentation du cube ABCDEFGH ?La perspective cavalièrene conserve pas: •la mesure : deux segments de même longueur peuvent être représentés par deux segments de longueurs différentes (AB?=BC); •les angles en particulier deux droites perpendiculaires peuvent être représen- tées par deux droites non perpendiculaires ((AB)??(AD)) Un carré peut être représenté par un parallélogramme (AEHD)! Deux droites peuvent se couper sur la perspective sans être sécantes en réalité! (les droites (HC) et (AG) par exemple)

Par contre, cette perspectiveconserve:

•le parallélisme : deux droites parallèles sont représentées par des droites paral- lèles; •le milieu ou tout autre division d"un segment.

1.2 Le plan

Définition 2 :Un planPpeut être défini par trois points A, B, C non alignés.

Il est alors noté (ABC).

Un plan peut être aussi défini par deux droites sécantes ou strictementparallèles.

Exemple :Dans le cube ABCDEFGH

le planPpeut être défini par : •les points A, E, C. Il peut être noté(AEC)

•les droites (EC) et (AG).

•les droites (AE) et (CG)A BC

DE FG H P

PAULMILAN2 TERMINALES

1.3 RELATIONS ENTRE DROITES ET PLANS

1.3 Relations entre droites et plans

1.3.1 Relations entre deux droites

Propriété 1 :Deux droites, dans l"espace, peuvent être : •coplanaires, si ces deux droites appartiennent

à un même plan [(AF) et (BE)];

•secantes, si ces deux droites se coupent en un point [(AB) et (AD)]; •parallèles, si ces deux droites sont coplanaires et n"ont aucun point commun ou si ces deux droites sont confondues [(AB) et (HG)];

•non coplanaires[(AB) et (DG)].A BC

DE F G H Conclusion :Deux droites peuvent être parallèles, sécantes ou non coplanaires.

1.3.2 Relations entre une droite et un plan

Propriété 2 :Une droite et un plan peuvent être :

•parallèles: si la droite et le plan n"ont

aucun point commun ou si la droite est contenue dans le plan [(EF) etP];

•sécantes: si la droite et le plan ont un

seul point commun [(HI) etP] A BC DE F G H I P

1.3.3 Relation entre deux plans

Propriété 3 :Deux plans peuvent être :

•parallèles: si les deux plans n"ont au-

cun points commun ou si les deux plans sont confondus (P1∩P2=∅)

•sécants: si les deux plans

ont une droite en commun. (P1∩P3= (BC)) A BC DE F G H P1 P2 P3

PAULMILAN3 TERMINALES

1 DROITES ET PLANS

1.4 Le parallélisme

1.4.1 Parallélisme d"une droite et d"un plan

Théorème 1 :Si une droitedest parallèle à une droiteΔcontenue dans un plan

P, alorsdest parallèle àP.

d//Δ

Δ?P?

?d//P P Δd Théorème 2 :Si un planP1contient deux droites sécantesd1etd2parallèles à un planP2, alors les plansP1etP2sont parallèles d

1?P1etd2?P1

d

1etd2sécantes

d

1//P2etd2//P2?????

?P1//P2 P1 P2 d1d 2 Théorème 3 :Si une droitedest parallèle à deux plansP1etP2sécants en une droiteΔalorsdetΔsont parallèles. d//P1etd//P2 P

1∩P2=Δ?

?d//Δ d P1 P2 Théorème 4 :Théorème du toit(démontration cf géométrie vectorielle) Soientd1etd2deux droites parallèles contenues respectivement dans les plans P

1etP2. Si ces deux plansP1etP2sont sécants en une droiteΔ, alors la droite

Δest parallèle àd1etd2.

d 1//d2 d

1?P1etd2?P2

P

1∩P2=Δ?????

??Δ//d1

Δ//d2

d1d2Δ P2 P1

PAULMILAN4 TERMINALES

1.5 SECTION D"UN CUBE ET D"UN TÉTRAÈDRE PAR UN PLAN

1.4.2 Parallélisme de deux plans

Théorème 5 :Si deux plansP1etP2sont parallèles, alors tout plan sécant à l"un est sécant à l"autre et les droites d"intersectiond1etd2sont parallèles. P 1//P2 P

3∩P1=d1?

??P

3∩P2=d2

d 1//d2 d2 d 1P1 P2 P3

1.5 Applications:sectiond"uncubeetd"untétraèdreparunplan

1.5.1 Section d"un cube par un plan

Soit un cube ABCDEFGH et un plan (IJK) tel

que : -→EI=2

3--→EH ,-→AJ=23-→AB et-→FK=14-→FG

Il s"agit de déterminer l"intersection, lorsque cela est possible, d"un plan avec chaque face du cube. A BC DE F G H ?I J? ??K •L"intersection, lorsqu"elle existe, d"une face par le plan (IJK)est un segment •Une droite doit être tracée dans un plan contenant la face du cube •Si deux points M et N du plan (IJK) sont sur une face, on relie M et N, cela donne l"intersection de (IJK) et de cette face •La section du cube par le plan (IJK) est un polygone.

Dans notre construction :

•On trace [IK] en rouge qui est l"intersection du plan(IJK) avec la face du haut EFGH. •On ne peut pas relier J à I ou K car ces segments nesont pas sur une face du cube.

•On cherche l"intersection de (IJK) avec la face avantABFE. Pour cela, on détermine l"intersection de ladroite (IK) avec la droite (EF) qui contient l"arête [EF]appartenant aux faces EFGH et ABFE. On note L leurpoint d"intersection. Comme L?(IK) doncL?(IJK).

•Comme L?(EF), donc L appartient au plan (EFB)

contenant la face ABFE. On trace alors la droite (JL) dans le plan (EFB) qui coupe [FB] en M.

Comme M?(JL), M?(IJK).

•Ainsi [JM] et [KM] constituent les intersections duplan(IJK)aveclesfacesavantABFEetdedroiteBCGF.On trace ces segments en rougeA BC

DE FG H ?I J? ?K L M

PAULMILAN5 TERMINALES

1 DROITES ET PLANS

On réitère cette opération pour la face gauche ADHE et la face du dessous ABCD :

•On détermine l"intersection de la droite (MJ) avec ladroite (AE) qui contient l"arête [AE] appartenant auxfaces ADHE et ABFE. On note N leur point d"intersec-tion. Comme N?(MJ) donc N?(IJK).

•Comme N?(AE), donc N appartient au plan (EAD)

contenant la face ADHE. On trace alors la droite (NI) dans le plan (EAD) qui coupe [AD] en O.

Comme O?(NI), O?(IJK).

•Ainsi [OI] et [OJ] constituent les intersections du plan(IJK) avec les faces de gauche ADHE et de dessousABCD. On trace ces segments en rouge et en pointillécar ces segments sont sur des faces cachées.

•La section du cube ABCDEFGH par le plan (IJK) est lepentagone IKMJO. A BC DE FG H ?I J? ?K L M N O Remarque :Comme les faces EFGH et ABCD dont parallèles. Le plan (IJK) coupe ces faces en des segments parallèles. Il en est de même pour les faces BCGH et

ADHE. On a donc :

(IK)//(OJ) et (KM)//(IO)

1.5.2 Section d"un tétraèdre par un plan

Soit un tétraèdre ABCD et un plan (EFG) tel

que :

E centre de gravité du triangle ABD,

-→BF=1

2-→BC et--→CG=15--→CA

Il s"agit de déterminer l"intersection d"un plan avec chaque face du tétraèdre. A B C D? E F? G?

Dans notre construction :

•E est l"intersection des médianes du triangle ABD. •On trace [GF] en rouge qui est l"intersection du plan(EFG) avec la face ABC. •On ne peut pas relier E à F ou G car ces segments nesont pas sur une face du tétraèdre.

•On cherche l"intersection de (EFG) avec la face ABD.Pour cela, on détermine l"intersection de la droite (GF)avec la droite (AB) qui contient l"arête [AB] apparte-nant aux faces ABC et ABD. On note H leur point d"in-tersection. Comme H?(GF) donc H?(EFG).

•Comme H?(AB), donc H appartient au plan (ABD)

contenant la face ABD. On trace alors la droite (HE) qui coupe [BD] en I et [AD] en J. Comme I?(HE) et J?(HE) alors I?(EFG) et J?(EFG).

•Ainsi [IJ], [FI] et [JG] constituent les intersections duplan (EFG) avec les faces ABD, BCD et ADC. On traceces segments en rouge et [FI] et [JG] en pointillé carsur des faces cachées.

•La section du tétrèdre ABCD par le plan (EFG) est lequadrilatère GFIJ. A B C DE FG? H IJ

PAULMILAN6 TERMINALES

1.6 L"ORTHOGONALITÉ

1.6 L"orthogonalité

1.6.1 Droites orthogonales

Définition 3 :Deux droitesd1etd2sont :

•perpendiculairessi, et seulement si,

d

1etd2secoupentperpendiculaire-

ment.

•orthogonalessi, et seulement si, il

existe une droiteΔparallèled1quiquotesdbs_dbs47.pdfusesText_47