[PDF] [PDF] Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016 - APMEP

20 jui 2016 · Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016 EXERCICE 1 5 points Commun à tous les candidats Les valeurs approchées des 



Previous PDF Next PDF





[PDF] Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016 - APMEP

20 jui 2016 · Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016 EXERCICE 1 5 points Commun à tous les candidats Les valeurs approchées des 



[PDF] Antilles-Guyane – 22 juin 2016 - APMEP

22 jui 2016 · Corrigé du baccalauréat ES–L Antilles–Guyane juin 2016 EXERCICE 1 Commun à tous les candidats 5 points 1 On donne le tableau de 



[PDF] Antilles Guyane 2016 Enseignement spécifique - Maths-francefr

Antilles Guyane 2016 Enseignement spécifique Corrigé EXERCICE 1 Partie A 1) a) Représentons la situation par un arbre de probabilités A B 0,65 0,35 D



[PDF] Sujet Spécialité Mathématiques Antilles-Guyane Bac S - 2016

Le sujet est composé de quatre exercices indépendants Le candidat doit traiter tous les exercices Dans chaque exercice, le candidat peut admettre un résultat 



[PDF] Corrigé Exercice 2 Antilles-Guyane Bac S - Freemathsfr

16MASSAG1 Page : 1/7 BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES Série : S DURÉE DE L'ÉPREUVE : 4 heures – COEFFICIENT : 9



[PDF] sujet mathématiques antilles guyane bac s 2016 - Alain Piller

Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane alainpiller Annales Bac Maths 2016 Corrigés Bac Maths 2016



[PDF] sujet mathématiques antilles guyane bac es l 2016 - Alain Piller

Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane alainpiller Annales Bac Maths 2016 Corrigés Bac Maths 2016 



[PDF] TS Antilles-Guyane 20 juin 2016 - Site de Maths Grange

20 jui 2016 · Baccalauréat S Antilles-Guyane 20 juin 2016 EXERCICE 1 5 points Commun à tous les candidats Les valeurs approchées des résultats 



[PDF] Sujet du bac STMG Mathématiques 2016 - Antilles-Guyane

BACCALAURÉAT TECHNOLOGIQUE SESSION 2016 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION



[PDF] Bac S 2016 Antilles Guyane - Les Tutos Maths

Bac S 2016 Antilles Guyane Bac S Antilles Guyane - 2016 1 Ce document est mis à disposition sous licence Creative Commons

[PDF] antilles guyane 2014 physique

[PDF] bac antille guyane 2014 maths

[PDF] correction bac antilles guyane 2017

[PDF] correction bac antilles guyane 2016

[PDF] corrigé bac antilles guyane 2016 maths

[PDF] bac s maths antilles guyane 2017

[PDF] bac s septembre 2014 antilles et métropole

[PDF] nouvelle caledonie mars 2015

[PDF] la machine a assure 40 de la production

[PDF] math metropole 2014

[PDF] nouvelle calédonie 2014 maths corrigé

[PDF] baccalauréat s nouvelle calédonie 17 novembre 2016

[PDF] amerique du nord 2013 maths

[PDF] maths nouvelle caledonie 2015

[PDF] bac nouvelle calédonie mars 2016

?Corrigé dubaccalauréat S Antilles-Guyane20 juin 2016?

EXERCICE15 points

Commun à tousles candidats

Les valeurs approchées des résultatsseront données à10-4près.

Les partiesAetBsont indépendantes

Partie A

Un fabricant d"ampoules possède deux machines, notées A et B. La machine A fournit 65 % de la production, et la machine B fournit le reste. Certaines am- poules présentent un défaut de fabrication : — à la sortie de la machine A, 8 % des ampoules présentent un défaut; — à la sortie de la machine B, 5 % des ampoules présentent un défaut.

On définit les évènements suivants :

—A: "l"ampoule provient de la machine A»;

—B: "l"ampoule provient de la machine B»;

—D: "l"ampoule présente un défaut».

1.On prélève un ampoule au hasard parmi la production totale d"une journée.

a.Construire un arbre pondéré représentant la situation.

Solution:

A 0,65? D 0,08 D0,92 B 0,35? D 0,05 D0,95 Solution:AetBforment une partition de l"univers donc d"après les proba- bilités totales on a :

P?D?=P?D∩A?

+P?D∩B? =PA?D?

×P(A)+PB?D?

×P(B)=0,598+0,3325

P?D? =0,9305

c.L"ampoule tirée est sans défaut.Calculer la probabilité qu"elle provienne de la machine A.

Solution:On cherchePD(A)

PD(A)=P?

D∩A?

P?D? =0,5980,9305=11781861≈0,6427

2.On prélève 10 ampoules au hasard parmi la production d"une journée à la sortie

de la machine A. La taille du stock permet de considérer les épreuves comme in- dépendantes et d"assimiler les tirages à tirages avec remise. Calculer la probabilité d"obtenir au moins 9 ampoules sans défaut. quedeuxissues:l"ampouleestsansdéfautouelle présenteundéfautdontlapro- babilité de succès estp=P? D? =0,92. SoitXla variable aléatoire comptant le nombre d"ampoules sans défaut alors

X?→B(10 ; 0,92)

Oncherche

Partie B

1.On rappelle que siTsuit une loi exponentielle de paramètreλ(λétant un réel

strictement positif) alors pour tout réel positifa,P(T?a)=a 0

λe-λxdx.

a.Montrer queP(T?a)=e-λa.

Solution:

P(T?a)=1-P(T?a)=1-a

0

λe-λxdx=1-?

-e-λx?a 0 =1-?? -e-λa? (-1)? 1-?

1-e-λa?

=e-λa b.Montrer que siTsuit une loi exponentielle alors pour tous les réels positifst etaon a P

T?t(T?t+a)=P(T?a).

Solution:

PT?t(T?t+a)=P?

PT?t(T?t+a)=P(T?a)

2.Dans cette partie, la durée de vie en heures d"une ampoule sans défaut est une

variable aléatoireTqui suit la loi exponentielle d"espérance 10000. a.Déterminer la valeur exacte du paramètreλde cette loi. Solution:L"espérance de la loi exponentielle de paramètreλest1λ

On a donc1

λ=10000??λ=10-4

b.Calculer la probabilitéP(T?5000).

Solution:

Page 2

c.Sachantqu"uneampoulesansdéfautadéjàfonctionnépendant7000 heures, calculer la probabilité que sa durée de vie totale dépasse 12000 heures. Solution:On cherchePT?7000(T?12000)=PT?7000(T?7000+5000)

D"aprèslaquestion1.b.onadonc

PT?7000(T?12000)=P(T?5000)≈0,6065

Partie C

L"entreprisea cherché à améliorer la qualité de sa production etaffirmequ"il n"y apasplusde6% d"ampoulesdéfectueusesdanssaproduction.Uneassociation de consommateurs réalise un test sur un échantillon et obtient 71 ampoules défectueuses sur 1000.

1.Dans le cas où il y aurait exactement 6 % d"ampoules défectueuses, déterminer un

défectueuses sur un échantillon aléatoire de taille 1000. Solution:La proportionp=0,06 et la taillen=1000 de l"échantillon vérifient : n?30 ,np=60?5 etn(1-p)=940?5 On peut donc bâtir l"intervalle de fluctuation asymptotiqueau seuil de 95 % I=? p-1,96? p(1-p)?n;p+1,96? p(1-p)?n?

On a ici

I=[0,0452 ; 0,0748]

2.A-t-on des raisons de remettre en cause l"affirmation de l"entreprise?

Solution:Ici, la fréquence observée d"ampoules défectueuses estf=0,071 et on af?I donc on n"a pas de raison de remettre en cause l"affirmation de l"entreprise

EXERCICE23 points

Commun à tousles candidats

On munit le plan complexe d"un repère orthonormé direct?

O ;-→u,-→v?

On noteCl"ensemble des pointsMdu plan d"affixeztels que|z-2|=1.

1.Justifier queCest un cercle, dont on précisera le centre et le rayon.

Solution:SoitB(2) alors|z-2|=1??BM=1

Cest donc le cercle de centreB(2) et de rayon 1.

2.Soitaun nombre réel. On appelleDla droite d"équationy=ax.

Déterminer le nombre de points d"intersection entreCetDen fonction des va- leurs du réela.

Solution:Soitz=x+iy?M(z)?C

M(z)?D???|z-2|=1

z=x+iax???|(x-2)+iax|=1 z=x+iax

Δ=16-12(1+a2)=4-12a2

Page 3

Δ>0??a2<13??-?

3 3On en déduit que :

— sia??

3 3? 3

3;+∞?

alorsCetDn"ont aucun point commun

— sia= -?

3

3ou sia=?

3

3alorsCetDont un seul point d"intersection. Les

deux droitesDsont les tangentes àCpassant par O

— sia??

3 3;? 3 3? alorsCetDont deux points communs distincts

EXERCICE37 points

Commun à tousles candidats

Partie A

On considère la fonctionfdéfinie pour tout réelxparf(x)=xe1-x2.

1.Calculer la limite de la fonctionfen+∞.

Indication : on pourra utiliserque pour tout réel x différent de0, f(x)=e x×x2ex2.

Solution:

?x?=0 ,f(x)=ex×x2ex2 or lim x→+∞x 2 ex2= 0 car limx→+∞e x2x2=+∞. De plus limx→+∞ex=0

Donc par produit,

limx→+∞f(x) = 0

2. a.On admet quefest dérivable surRet on notef?sa dérivée.

Démontrer que pour tout réelx,

f ?(x)=?1-2x2?e1-x2. v(x)=1-x2=? ?u?(x)=1 v ?(x)=-2x ?x?R,f?(x)=(1-2x2)e1-x2 b.En déduire le tableau de variations de la fonctionf. on en déduit le tableau suivant :

Page 4

x-∞-? 2 2? 2

2+∞

f ?(x)-0+0- f(x)0 2e 2? 2e 2 0 On remarque quefest impaire donc limx→-∞f(x) = 0

Partie B

On considère la fonctiongdéfinie pour tout réelxparg(x)=e1-x. Sur le graphique ci-dessous, on a tracé dans un repère les courbes représenta- tivesCfetCgrespectivement des fonctionsfetg.

0,5 1,0 1,5 2,0 2,5 3,0-0,5-1,0-1,5-2,0-2,5

-0,5 -1,0 -1,50,5

1,01,52,02,5

Cf Cg Le but de cette partie est d"étudier la position relative de ces deux courbes.

1.Après observation du graphique, quelle conjecture peut-onémettre?

Solution:Il semblerait queCfsoit toujours en dessous deCg

2.Justifier que, pour tout réelxappartenantà ]-∞; 0],f(x)

Solution:SurR, e1-x>0 et e1-x2>0

On en déduit que sur ]-∞; 0] ,f(x)?0 etg(x)>0

On a donc bien

?x?]-∞; 0] ,f(x)Page 5

3.Dans cette question, on se place dans l"intervalle ]0 ;+∞[.

On pose, pour tout réelxstrictement positif,Φ(x)=lnx-x2+x. a.Montrer que, pour tout réelxstrictement positif, f(x)?g(x) équivaut àΦ(x)?0.

Solution:

f(x)?g(x)??xe1-x2?e1-x six>0 alors cette inéquation est équivalente à ln? xe1-x2? ?ln?e1-x?car la fonction ln est croissante sur ]0 ;+∞[ ln? xe1-x2? ?ln?e1-x???ln(x)+ln? e1-x2? ?ln?e1-x???ln(x)+1-x2?

1-x??ln(x)-x2+x?0

Finalement

six>0,f(x)?g(x) équivaut àΦ(x)?0 On admet pour la suite quef(x)=g(x) équivaut àΦ(x)=0. b.On admet que la fonctionΦest dérivable sur ]0 ;+∞[. Dresser le tableau de variation de la fonctionΦ. (Les limites en 0 et+∞ne sont pas attendues.)

Solution:

or sur ]0 ;+∞[ ,2x+1 x>0 doncΦ?(x) est du signe de (1-x) on en déduit le tableau x01+∞ ?(t)+0-

Φ(t)0

c.En déduire que, pour tout réelxstrictement positif,Φ(x)?0.

Solution:

Sur ]0 ;+∞[,Φadmet 0 pour maximum donc?x?]0 ;+∞[ ,Φ(x)?0

4. a.La conjecture émise à la question 1. de la partie B est-elle valide?

Solution:

La conjecture est validée puisque l"on vient de montrer queΦ(x)?0 donc f(x)?g(x) sur ]0 ;+∞[ or on avait montré quef(x)Finalement

Cfest bien toujours en dessous deCgsurR

b.Montrer queCfetCgont un unique point commun, notéA.

Solution:f(x)=g(x)??Φ(x)=0??x=1

A(1 ; 1) est donc l"unique point commun deCfetCg

c.Montrer qu"en ce pointA, ces deux courbes ont la même tangente.

Page 6

Solution :gest dérivable sur ]0 ;+∞[ comme composée de fonctions déri- vables sur ]0 ;+∞[. ?x?]0 ;+∞[ ,g?(x)=-e1-x alorsg?(1)=-1 orf?(1)=-1 Donc

CfetCgadmettent la même tangente enA

Partie C

quotesdbs_dbs15.pdfusesText_21