[PDF] [PDF] Barycentres : Résumé de cours et méthodes 1 Barycentre de deux

Il s'agit en fait du centre de gravité du triangle ABC (si les trois points sont distincts) 3 Théorème du barycentre partiel - construction du barycentre de trois points



Previous PDF Next PDF





[PDF] Barycentres : Résumé de cours et méthodes 1 Barycentre de deux

Il s'agit en fait du centre de gravité du triangle ABC (si les trois points sont distincts) 3 Théorème du barycentre partiel - construction du barycentre de trois points



[PDF] Barycentres

Ce point est appelé barycentre des deux points pondérés (A, α) et (B , β) On note G = bar{(A Théorème 7 : théorème du barycentre partiel Si H = bar{(A,α),( B 



[PDF] Le barycentre - 1 S

3 avr 2008 · Théorème : On ne change pas le barycentre de trois points pondérés en remplaçant deux d'entre eux par leur barycentre partiel (s'il existe) 



[PDF] Cours 2 - Barycentres

ce qui définit un unique point G b/ Définition G s'appelle le barycentre des points pondérés (A, a ) , (B, b ) , 



[PDF] BARYCENTRES I) Barycentre de deux points

ou en utilisant le théorème d'associativité qui fait intervenir le barycentre partiel I de (B ; b), (C ; c) affecté du coefficient b + c • 2ème méthode vectorielle utilisant 



[PDF] Fiche dexercices Barycentres partiels, alignement et concours

Barycentres partiels, alignement et concours Exercice 1 Soit G = Bary[(A, 2)(B, 4 )(C, 3)] et J = Bary[(A, 1)(B, 2)] 1 Faire une figure 2 Démontrer que les points 



[PDF] LE BARYCENTRE DANS LE PLAN - Cafe Pedagogique

I BARYCENTRE DE DEUX OU TROIS POINTS Comment définit-on le barycentre de 2 ou 3 points pondérés ? Théorème du barycentre partiel SI



[PDF] 1 S Barycentres de trois points ou plus

1°) Règle du barycentre partiel A, B, C sont trois points quelconque du plan a, b, c sont trois réels tels que 0 a b c + + ≠ et 0 a b + ≠ Si G est le barycentre 



[PDF] Barycentres - Thierry Sageaux

II Barycentre de deux points point G, appelé barycentre du système pondéré tel que α → Théorème d'associativité (ou du barycentre partiel 5 H) : Si G 

[PDF] exercice corrigé barycentre 1ere s pdf

[PDF] le barycentre exercices corrigés

[PDF] barycentre cours

[PDF] comment construire un barycentre

[PDF] barycentre parallélogramme

[PDF] barycentre triangle

[PDF] barycentre formule

[PDF] barycentre de 4 points

[PDF] barycentre de deux points pondérés exercice corrigé

[PDF] barycentre de 3 points exercice corrigé

[PDF] isobarycentre de 3 points

[PDF] barycentre 4 points

[PDF] barycentre de n points

[PDF] points pondérés définition

[PDF] barycentre et ligne de niveau pdf

[PDF] Barycentres : Résumé de cours et méthodes 1 Barycentre de deux Barycentres : Résumé de cours et méthodes On appelle point pondéré tout couple(A,a)oùAest un point etaun réel.

1Barycentre de deux points

DÉFINITIONSia+b?=0, le barycentre des points pondérés(A,a)(B,b)est le pointGtel quea-→GA+b-→GB=-→0 .PROPRIÉTÉ

Sia+b?=0,Gbarycentre de(A,a)(B,b)?-→AG=ba+b-→ABCette propriété est utilisée pour construire graphiquement le barycentre de deux points.

Exemples :AetBsont deux points distants de 3 cm.

G

1barycentre de(A,1)(B,2)?--→AG1=21+2-→AB=23

-→AB. G

2barycentre de(A,4)(B,-1)?--→AG2=-14+(-1)-→AB=-13

-→AB.AB G G12Remarque :SiA?=B, les pointsA,BetGsont alignés.

PROPRIÉTÉSia+b?=0, le barycentre du système(A,ka)(B,kb)(aveck?=0) est le même que celui du système(A,a)(B,b).Exemple :le barycentre de(A,4)(B,-2)est le barycentre de(A,2)(B,-1).

PROPRIÉTÉSia+b?=0, les coordonnées du barycentre de(A,a)(B,b)dans un repère sont telles que :

x

G=axA+bxBa+betyG=ayA+byBa+bDÉFINITION

On appelleisobarycentrede deux pointsAetB, le barycentre de ces deux points pondérés par un même coefficient. Il s"agit en

fait dumilieudu segment[AB].Exemple :on peut affirmer sans calculs que le barycentre du système(A,-3)(B,-3)est le milieu de[AB].

2Barycentre de trois points

DÉFINITIONSia+b+c?=0, le barycentre des points pondérés(A,a)(B,b)(C,c)est le pointGtel quea-→GA+b-→GB+c-→GC=-→0 .PROPRIÉTÉ

Sia+b+c?=0, le barycentre du système(A,ka)(B,kb)(C,kc)(aveck?=0) est le même que celui du système(A,a)(B,b)(C,c).Exemple :le barycentre de(A,-3)(B,-6)(C,-12)est le barycentre de(A,1)(B,2)(C,4).

PROPRIÉTÉSia+b+c?=0, les coordonnées du barycentre de(A,a)(B,b)(C,c)dans un repère sont telles que :

x G=axA+bxB+cxCa+b+cetyG=ayA+byB+cyCa+b+c1S - Barycentres c?P.Brachet -www.xm1math.net1

DÉFINITION

On appelleisobarycentrede trois pointsA,BetC, le barycentre de ces trois points pondérés par un même coefficient. Il s"agit en

fait ducentre de gravitédu triangleABC(si les trois points sont distincts).3Théorème du barycentre partiel - construction du barycentre de trois points

PROPRIÉTÉEtant donné trois pointsA,B,Cet trois réelsa,betctels quea+b+c?=0 etb+c?=0.

Si on noteG1, le barycentre de(B,b)(C,c)alors le barycentreGde(A,a)(B,b)(C,c)est aussi le barycentre de(A,a)(G1,b+c).

G=barycentre(A,a) (B,b)(C,c)????

G=barycentre(A,a)(G1,b+c)

On peut donc "remplacer» deux points pondérés d"un système par leur barycentre (dit "partiel») affecté de la somme de leurs

coefficientsApplication à la construction du barycentre de trois points : D"après le principe ci-dessus, cela revient à construire deux barycentres de deux points. Exemple :On cherche à construireG, le barycentre de(A,1)(B,2)(C,4)sur la figure ci-dessous :BAC

figure de base1) On construitG1, le barycentre partiel de(B,2)(C,4). D"après la formule de construction du barycentre de deux points, on a

--→BG1=44+2-→BC=23 -→BC.BAC barycentre partiel construction duEtape 1 : G

12) D"après la propriété du barycentre partiel, on peut "remplacer» dans le système(B,2)(C,4)par(G1,2+4). Donc,Gest en fait

le barycentre de(A,1)(G1,6). D"après la formule de construction du barycentre de deux points, on a-→AG=61+6--→AG1=67

--→AG1.BAC G

1Etape 2 :

construction du barycentre du système initial GRemarque :ce principe s"applique aussi aux barycentres de quatre points pondérés.

Exemple : pour construireG, le barycentre de(A,1)(B,2)(C,-1)(D,4), on peut commencer par déterminerG1, le barycentre

partiel de(A,1)(B,2)etG2, le barycentre partiel de(C,-1)(D,4).

On a donc

--→AG1=23 -→ABet--→CG2=43 -→CD.

En "remplacant» dans le système(A,1)(B,2)par(G1,1+2)et(C,-1)(D,4)par(G2,-1+4), on en déduit queGest aussi le

barycentre de(G1,3)(G2,3)(c"est à dire le milieu de[G1G2].2 c?P.Brachet -www.xm1math.net1S - Barycentres AB C DG 1 G

2G4Réduction de sommes vectorielles à l"aide de barycentres

Un des principaux intérêts des barycentres est de les utiliser pour réduire des sommes de vecteurs grâce à la propriété suivante :

PROPRIÉTÉ•Sia+b?=0 alors pour tout pointM,a-→MA+b-→MB= (a+b)--→MGoùGest le barycentre de(A,a)(B,b).•Sia+b+c?=0 alors pour tout pointM,a-→MA+b-→MB+c-→MC= (a+b+c)--→MGoùGest le barycentre de(A,a)(B,b)(C,c).Exemple :

Si on veut réduire la somme 2-→MA-3-→MB+6-→MC, on introduitGle barycentre de(A,2)(B,-3)(C,6).

On a alors, 2-→MA-3-→MB+6-→MC= (2-3+6)--→MG=5--→MG.

Remarque :Si la somme des coefficients est nulle, on ne peut plus utiliser un barycentre. Mais en utilisant la relation de Chasles,

on peut montrer que la somme de vecteurs est en fait indépendante du pointM. Exemple : 3-→MA-5-→MB+2-→MC=3-→MA-5?-→MA+-→AB? +2?-→MA+-→AC? =-5-→AB+2-→AC

5Recherche de lieux géométriques

En utilisant les réductions de sommes vectorielles vues au paragraphe précédent, on peut facilement en déduire la nature de cer-

tains lieux géométriques. Exemple :ABCest un triangle dans le plan muni d"un repère orthonormé d"unité 1 cm. a)Déterminons l"ensembleE1des pointsMtels que?-→MB+2-→MC?=6cm.

Pour réduire la somme vectorielle, on pense à utiliserG1, le barycentre de(B,1)(C,2)(que l"on construit avec--→BG1=22+1-→BC=

23
-→BC). Alors, pour tout pointM,-→MB+2-→MC= (1+2)--→MG1=3--→MG1. E

1est donc l"ensemble des pointsMtels que?3--→MG1?=6cm? ?--→MG1?=2cm.

On en déduit queE1est le cercle de centreG1et de rayon 2 cm. BCA G 1E

1b)Avec le même triangle, déterminons maintenant l"ensembleE2des pointsMtels que?3-→MA+-→MB?=2?-→MA+-→MC?.1S - Barycentres

c?P.Brachet -www.xm1math.net3

Si on noteG2le barycentre de(A,3)(B,1)alors pour tout pointM, 3-→MA+-→MB= (3+1)--→MG2=4--→MG2.

(G2est construit avec--→AG2=13+1-→AB=14 -→AB)

Si on noteG3le barycentre de(A,1)(C,1)alors pour tout pointM,-→MA+-→MC= (1+1)--→MG3=2--→MG3.

(G3est l"isobarycentre deAetC, c"est à dire le milieu de[AC]) E

2est donc l"ensemble des pointsMtels que?4--→MG2?=2?2--→MG3? ? ?--→MG2?=?--→MG3?.

On en déduit queE2est la médiatrice de[G2G3].BCA G 2 G 3E

26Comment montrer que trois points sont alignés à l"aide de barycentres?Principe général :pour prouver que trois points sont alignés il suffit de montrer que l"un peut s"exprimer comme un barycentre

des deux autres (en utilisant la propriété du barycentre partiel dans tous les sens).Les exercices basés sur cette méthode demandent une bonne maîtrise des barycentres partiels et une bonne observation de

l"énoncé. Exemple :SoitABCun triangle,Ile milieu de[AB],Kle barycentre de(A,1)(C,2)etJle milieu de[IC]. Il va s"agir de montrer que les pointsB,KetJsont alignés.

1) Recherche empirique du point dont on va montrer que c"est un barycentre des deux autres :

Bétant un point de la figure de base, il sera a priori plus difficile de l"exprimer comme barycentre des pointsKetJqui ont été

rajoutés après.

Cela nous laisse le choix entreKetJ.

2) Solution en partant deJet donc en cherchant à l"écrire comme barycentre deBetK:

Recherche :

D"après l"énoncé,Jest l"isobarycentre deIetCetIest aussi l"isobarycentre deAetB. Donc, d"après la propriété du barycentre

partiel, on peut remplacer(A,1)(B,1)par(I,2)dans un système. L"idée est donc de partir en disant queJest le barycentre de

(I,2)(C,2).

Rédaction :

Jmilieu de[IC]?Jbarycentre de(I,2)(C,2).

Imilieu de[AB]?Ibarycentre de(A,1)(B,1).

Donc,Jest aussi le barycentre de(A,1)(B,1)(C,2)(on "remplace»(I,2)par(A,1)(B,1)).

Or,Kest le barycentre de(A,1)(C,2), on peut donc "remplacer»(A,1)(C,2)dans le système par(K,3).

On en déduit queJest le barycentre de(K,3)(B,1)et donc que les pointsB,KetJsont alignés.

3) Solution en partant deK(moins naturelle) :

Kest défini comme le barycentre de(A,1)(C,2). Il faut essayer de faire apparaîtreBetJ.

Comme aucune solution naturelle n"apparaît, on utilise l"astuce suivante pour forcer l"apparition du pointB:

On va écrire queKest aussi le barycentre de(A,1)(B,1)(B,-1)(C,2).

(Attention : ce n"est plus la propriété du barycentre partiel, mais cela est vrai car-→KA+2-→KC=-→0?-→KA+-→KB--→KB+2-→KC=-→0

quotesdbs_dbs2.pdfusesText_2