[PDF] [PDF] Chapitre 5 Formes quadratiques et matrices symétriques

7 mar 2013 · Matrices symétriques et formes quadratiques 67 Chapitre 5 Formes On dit que la forme quadratique Q est définie positive si ∀X = 0 ∈ E



Previous PDF Next PDF





[PDF] Chapitre 2 Formes bilinéaires symétriques, formes quadratiques

2 1 2 Matrice d'une forme bilinéaire symétrique On suppose E de la matrice M de la forme quadratique q dans la base E est la matrice de sa forme polaire La



[PDF] FORMES QUADRATIQUES - Licence de mathématiques Lyon 1

On appelle matrice associée à q dans B la matrice de sa forme polaire PROPOSITION 15 : Soit q forme quadratique représentée par A dans B Soit B' une autre 



[PDF] Chapitre 2 Formes quadratiques

C'est aussi le rang de la matrice Aq dans n'importe quelle base Pour terminer, à une forme quadratique, on peut associer le cône isotrope Cq = {x 2 E, q(x)=0} 



[PDF] Formes quadratiques réelles Exemples et applications

2 nov 2014 · Définition 5 Soit q une forme quadratique sur E de dimension finie et B = (e1, , en) une base de E On appelle matrice de q dans la base B la



[PDF] Formes quadratiques sur un espace vectoriel de dimension finie

Soit A la matrice associée à q dans une base B Alors, si x ∈ E a pour vecteur matrices Exemple 4 ([dSP] p 51) La forme quadratique q : R3 −→ R (x, y, z) 



[PDF] Cours de Mathématiques - Institut de Mathématiques de Toulouse

Matrices orthogonales 9 3 Matrices symétriques 11 4 Application aux formes quadratiques réelles 13 Chapitre 3 Fonctions de plusieurs variables 17 1



[PDF] Chapitre 5 Formes quadratiques et matrices symétriques

7 mar 2013 · Matrices symétriques et formes quadratiques 67 Chapitre 5 Formes On dit que la forme quadratique Q est définie positive si ∀X = 0 ∈ E



[PDF] Applications Bilinéaires et Formes Quadratiques

Soit B une autre base de E, et soit P la matrice de passage de B `a B , c'est-`a- dire la matrice telle que pour tout vecteur x de E, ayant les matrices colonnes X et X 



[PDF] TP 1 : réduction des formes quadratiques 1 Cas générique

carrés de formes linéaires On rappelle si besoin est qu'une forme quadratique sur Rn est associée `a une matrice symétrique S telle que q(x1,x2, ··· ,xn) = XtSX,

[PDF] montrer que q est une forme quadratique

[PDF] dessin industriel cours pdf

[PDF] coupes et sections dessin technique exercices corrigés

[PDF] bases du dessin technique pdf

[PDF] dessin technique

[PDF] cours et exercices avec solutions

[PDF] dessin technique exercices corrigés pdf

[PDF] cours de dessin technique mécanique pdf

[PDF] cours d'échographie gratuit

[PDF] manuel d'échographie

[PDF] cours echographie abdominale pdf

[PDF] prf doppler

[PDF] principe d'échographie

[PDF] cryptography engineering design principles and practical applications

[PDF] cryptographie pdf

[PDF] Chapitre 5 Formes quadratiques et matrices symétriques Chapitre5.Matricessym´e trique setformesquadratiques.67 Chapitre5.Formesquadr atique setmatricessym´et riques.

1.For mesbilin´eaires ,formesquadratiques

1.1.Forme sbilin´eaireset quadratiques

Onad ´ej `arencontr´elanot iondeformemultilin´eaire(Chap.2).Su runesp acevectorie l E,onappelleformebilin´eair er´eelleuneapplicat ionquifai tcorrespondre`atoutepairede vecteursX,Y!Eunno mbrer´eelf(X,Y),ce tteapplicati on´etantlin´eaireenXetenY, donc f(! 1 X 1 2 X 2 ,Y)=! 1 f(X 1 ,Y)+! 2 f(X 2 ,Y) f(X,µ 1 Y 1 2 Y 2 1 f(X,Y 1 2 f(X,Y 2 ).(1.1) Lafo rmebilin´eaireestd itesym´etriquesif(X,Y)=f(Y,X).

Exemples.Leproduitscalaire

X.

Ydansl'es paceeuclidienR

n estun eformebil in´eaire sym´etrique.Lacomposantesurunaxed onn ´eduproduitvectoriel X"

Ydansl'es pace

R 3 estun eformebil in´eaire,maispassy m´etrique(elleestenfaitantisy m´etrique!).Sig ethsontdeuxfon ctionsd'un evariabler´eelle,int´egrabl essuruni nte rvalle(a,b),f(g,h)= b a g(x)h(x)dxestun eformebil in´eairesym´etriq ueengeth. Lepr emierexemplesugg`ere lad´efinitionsuiva nte:

Etantdonn´ee uneformebilin´eaire

Etantdonn´ee laformebilin´eairef(X,Y),on luiass ocieuneformequadrat iquepar

Q(X)=f(X,X).(1.2)

Biensˆur, cetteformequadra tiquen'estpaslin ´eaire:Q(!X)=! 2

Q(X).In versement

pourtoutef ormequadratique Q,onpeutconstruireuneformebilin´eairesym´etriquef bilin´earit´e etsio nfa itl'hy poth`esequefestsym ´etrique,f(X,Y)= 1 2 (f(X+Y,X+Y)#f(X,X)# f(Y,Y))= 1 2 (Q(X+Y)#Q(X)#Q(Y)).

J.-B.Z.7Mars2013

68M´ethodesmath´ematiquesp ourphysiciens2.LP207

n cor- respondlaformequadrati que$ X$ 2 X. Xquiestl anormeca rr´ee( lalongueurcarr´ ee) duve cteur

X.Demˆeme,

b a f 2 (x)dxestun enormecar r´eepourlesfonctio ns(decarr´e int´egrable)sur(a,b). Th´eor`emedePythagore.Soitfunefo rmebilin´eairesy m´etrique,Qlafo rme quadratiqueassoci´ee,onapourt outepairedevecteursorthogonaux %X,Y:f(X,Y)=0=&Q(X+Y)=Q(X)+Q(Y),(1.4) quid´ec oulede(1.3).

1.2.Forme sd´efiniespositi ves

Ondi tquelafor mequadrat iqueQestd´efiniepositivesi %X'=0!EQ(X)>0,(1.5) etdo ncQ(X)=0sietseulementsiX=0.Laformeestsemi-d´efiniepositivesil' in´egalit´e n'estpasstrict e:%X'=0!EQ(X)(0,el leestind´efiniesiQ(X)peutprendreun signeoul'autr eselonla valeurdeX.Parabusdelangageonditd'uneformebilin´eaire

qu'elleestd´efiniep ositive,s emi-d´efiniepositive, etc,sila formeq uadratiqueassoci´ee l'est.

n estd´ efinipositif,Q( X) d´efinissantlanormecarr´ee,c' est-`a -direlalongueur carr´eeduvecteu r

X.Aucontraire,

dansl'es pace-tempsdelaRelativit´erestreinte(espa ced eMinkowski),laformequadratique

Q(X)=c

2 t 2 #x 2 1 #x 2 2 #x 2 3 estin d´efinie:lesquadrivecteursde" genr etemps" ontune normecarr´ee positive,ceuxde"genreespa ce"unenormecarr´een´egat ive,ceuxde"genre lumi`ere"unenormenulle.Dan sl'espaceR 2 ,laformequadratiqueQ(X)=x 1 x 2 est ind´efinieetlaformeQ (X)=(x 1 #x 2 2 estsemi -d´efiniepositive,pourquoi? Sila formes ym´etriquefestd ´efiniepositive,pourto utepaireX,Ydeve cteursnon colin´eairesettoutr´eel!,levecteur!X+Yn'estpasnul,donc Q(!X+Y)>0est strictementpositif.Or

Q(!X+Y)=!

2

Q(X)+2!f(X,Y)+Q(Y).

estun trinˆ omeduseconddegr´een!,etlefaitqu'ilesttoujoursstrictementpositifimplique quesond iscrimina ntestn´egatif,donc =f(X,Y) 2 #Q(X)Q(Y)<0

7Mars2013J.-B.Z.

Chapitre5.Matricessym´e trique setformesquadratiques.69

Enre vanchesiXetYsontcolin´ea ires,ilexisteun!

0 telque! 0

X+Y=0,etalors

Q(!X+Y)(0s'annuleen!

0 maisnechan gepasd esigne,sondiscrimin antestnul .On obtientainsil'in´egalit´edeSchwarz |f(X,Y)|)(Q(X)Q(Y)) 1 2 ,(1.6) avec´egali t´esietseulementsiXetYsontcolin´ea ires. 3 ,cettein´egalit´enousditque X. Y|)$ X$$ Y$ ouen core,sionserappellel aformul ede trigonom´ etriecos#= X. Y X"" Y" ,que|cos#|)1, avec´egali t´essi#=0ou$donc Xet Ycolin´eaires.Plusg´en´eralement,po urtouteform equotesdbs_dbs2.pdfusesText_2