[PDF] [PDF] Formes quadratiques

Remarque - Si q est non dégénérée, alors son noyau est réduit au vecteur nul 5 2 Construire une base orthogonale Soit q une forme quadratique définie sur un 



Previous PDF Next PDF





[PDF] Formes quadratiques

Remarque - Si q est non dégénérée, alors son noyau est réduit au vecteur nul 5 2 Construire une base orthogonale Soit q une forme quadratique définie sur un 



[PDF] Chapitre 2 Formes bilinéaires symétriques, formes quadratiques

La forme bilinéaire symétrique b est dite non dégénérée quand son noyau est réduit `a {0} Si E est de dimension finie, le rang de b est le rang de l'application ϕb,



[PDF] FORMES QUADRATIQUES - Licence de mathématiques Lyon 1

DEFINITION 20 : FORME QUADRATIQUE REGULIERE OU DEGENEREE On dit que q est régulière (ou non dégénérée) Si { } Sinon on dit qu'elle est 



[PDF] Chapitre 2 Formes quadratiques

On dit que b est non dégénérée si son noyau est réduit à {0} Dans ce cas, la matrice Aq est inversible Plus généralement, on appelle rang de q, le rang de l' 



[PDF] Formes quadratiques réelles Exemples et applications

2 nov 2014 · n ⩾ 3, la forme quadratique q(x)=f(x)g(x) est dégénérée En effet, son rang est inférieur ou égal `a 2 donc son noyau est non réduit `a 0



[PDF] Formes quadratiques sur un espace vectoriel de dimension finie

est de rang 2 et de noyau Vect(1, 1, −1) Définition 8 ([dSP] p 51) Une forme quadratique q est non-dégénérée lorsque ker q = 0



[PDF] Applications Bilinéaires et Formes Quadratiques

e) Montrer que le noyau de L(B1) n'est pas réduit `a 0, en en exhibant un vecteur (ici un polynôme `a exposants dans I) non nul On consid`ere l'application D 



[PDF] ALGÈBRE BILINÉAIRE Table des matières 1 Formes quadratiques

13 déc 2019 · NB : les deux premières sont de même rang, de même discriminant, mais ne sont pas congruentes Définition Soit q une forme quadratique sur 



[PDF] Formes quadratiques sur un espace vectoriel de - Agreg-Maths

18 mai 2017 · Elle est dégénérée sinon – Pro : q est non-dégénérée ⇔ det(A) = 0 – Def : Une forme quadratique q est définie ssi 



[PDF] Formes bilinéaires et quadratiques

Réciproquement, toute forme quadratique q sur E pro- vient d'une seule forme bilinéaire symétrique : celle dé- terminée, lorsque la caractéristique de k n'est pas 2 

[PDF] forme bilinéaire exo7

[PDF] grille evaluation croquis

[PDF] forme trigonométrique de 2i

[PDF] forme trigonométrique cos et sin

[PDF] démonstration forme exponentielle nombre complexe

[PDF] nombre complexe forme algébrique

[PDF] comment avoir une bonne note en philo explication de texte

[PDF] comment faire une puissance sur une calculatrice casio graph 35+

[PDF] enlever ecriture scientifique casio graph 35+

[PDF] comment faire une puissance sur une calculatrice casio graph 35+e

[PDF] forme trigonométrique de

[PDF] comment faire une puissance sur une calculatrice casio graph 25+

[PDF] calculatrice ecriture scientifique en ligne

[PDF] confiance au travail définition

[PDF] confiance en soi au travail

[PDF] Formes quadratiques UFR MATH

EMATIQUESFormes quadratiques

On se place sur unR-espace vectorielEdedimension nien.1.Formes bilineaires symetriques et formes quadratiques

1.1.Formes bilineaires symetriques

Denition 1 {Une forme bilineaire surEest une application':EE!Rlineaire par rapport a chacune de ses variables. Elle est dite symetrique si elle verie de plus :8(x;y)2EE; '(x;y) ='(y;x). Remarque -Si'est une forme bilineaire surE, alors, pour toutx2E,'(0;x) ='(x;0) = 0. Exemple -Soientfetgdeux formes lineaires surE. L'application'deEEdansR denie par'(x;y) =f(x)g(y) est une forme bilineaire denie surE. Proposition 2 {L'ensemble des formes bilineaires (respectivement bilineaires symetriques) sur unR-espace vectorielEest unR-espace vectoriel.1.2.Formes quadratiques Denition 3 {Une forme quadratiqueqsurEest une applicationq:E!Rveriant les deux conditions suivantes :

1)8x2E;82R; q(x) =2q(x)

2) L'application (x;y)7!12

[q(x+y)q(x)q(y)] est bilineaire symetrique. Proposition 4 {L'ensemble des formes quadratiques sur unR-espace vectorielEest un

R-espace vectoriel.

Theoreme 5 {Il existe un isomorphisme canonique entre l'espace vectoriel des formes

quadratiques et l'espace vectoriel des formes bilineaires symetriques.Demonstration :notonsQ(E)l'ensemble des formes quadratiques denies surEetB(E)

l'ensemble des formes bilineaires symetriques.

Soitq2Q(E). Posons(q) ='avec'(x;y) =12

[q(x+y)q(x)q(y)].(q)2B(E), ainsi denie, est bien une forme bilineaire symetrique. Soit'2B(E). Denissons0(')par0(')(x) ='(x;x)pour toutx2E. Un calcul montre que0(')2Q(E). Montrons queest inversible et que son inverse est0. Soit'2B(E). On a0(') = (q)avecq(x) ='(x;x). Or(q) ='0avec

0(x;y) =12

[q(x+y)q(x)q(y)] 12 ['(x+y;x+y)'(x;x)'(y;y)] ='(x;y) par bilinearite de'. On a donc0=IdB(E). On montre de m^eme que0=IdQ(E). L'applicationest donc bijective et1=0. Elle est lineaire par construction, d'ou le resultat. Pr eparationa l'agregation interne UFR maths, Universite de Rennes I Denition 6 {Soitqune forme quadratique. L'unique forme bilineaire symetrique'telle que'(x;x) =q(x) pour toutx2Es'appelle la forme bilineaire symetrique associee aq. 1.3. Ecriture matricielleSoit (e1;:::;en) une base deE. Soientxetydeux vecteurs deEde coordonnees respectives (xi)1inet (yj)1jndans la base (e1;:::;en). Soit'une forme bilineaire symetrique denie surE. On a alors par bilinearite de': '(x;y) ='0 nX i=1x iei;nX j=1y jej1 A X

1i;jnx

iyj'(ei;ej) Reciproquement, soit (aij)1i;jnune famille de reels telle queaij=ajipour 1i;jn; alors l'application (x;y)7!X

1i;jna

ijxiyjest bilineaire symetrique. Denition 7 {Soit'une forme bilineaire symetrique denie surEet soit (e1;:::;en) une base deE. La matriceMdeMn(R) denie parMij='(ei;ej) s'appelle la matrice de' dans la base (e1;:::;en). SiXetYdesignent respectivement les matrices-colonnes des coordonnees dexet dey

dans la base (e1;:::;en), alors on a'(x;y) =tXMY=tY MXProposition 8 {Soit'une forme bilineaire symetrique denie surE. SiMest la matrice

de'dans la base (e1;:::;en), alors la matriceM0de'dans la base (e01;:::;e0n) estM0=tPAP, ouPest la matrice de passage de la base

(e1;:::;en) a la base (e01;:::;e0n).Demonstration :soientxetydes vecteurs deE. NotonsXetY(respectivementX0

etY0) les matrices-colonnes de leurs coordonnees respectives dans la base(e1;:::;en) (respectivement(e01;:::;e0n)). On aX=PX0etY=PY0. On en deduit que '(x;y) =tXMY=t(PX0)M(PY0) =tX0tPMPY0. D'ouM0=tPMP.Denition 9 {Soitqune forme quadratique. La matrice de la forme bilineaire symetrique associee aqdans une baseBs'appelle la matrice deqdans la baseB. Denition 10 {Deux matricesMetM0deMn(K) sont dites congruentess'il existe une matriceP2GLn(K) telle queM0=tPMP. Deux matrices sont donc congruentes si elles representent la m^eme forme bilineaire dans deux bases dierentes deE. Proposition 11 {La congruence est une relation d'equivalence.Demonstration :c'est une relation re exive car, pour toutM2Mn(R),M=tInMIn. Elle est symetrique car, siM0=tPMP, alorsM=tP1MP1. Enn c'est une relation transitive car siM00=tP0M0P0etM0=tPMP, alorsM00=tP0(tPMP)P0=

t(PP0)M(PP0)etPP0est bien une matrice inversible.1.4.Recherche de la forme bilineaire associee a une forme quadratique

Soit (e1;:::;en) une base deE. Une forme bilineaire symetrique'est une application de

EEdansRdenie par'(x;y) =tXMY=P

i;jmijxiyjouMest la matrice symetrique reelle denie parmij='(ei;ej). { 2 {

FORMES QUADRATIQUES

Une forme quadratique s'ecrit donc sous la forme : q(x) =X

1i;jnm

ijxixj=nX i=1m iix2i+ 2X

1i ijxixj: Reciproquement, si on se donne une forme quadratiqueq, on a alors q(x) =nX i=1m iix2i+ 2X

1i ijxixj: Pour retrouver la forme bilineaire associee'aq, on utilise la regle du dedoublement des termes : on remplace les termesx2iparxiyi on remplace le termexixjpar12 (xiyj+xjyi) On verie que, pour'ainsi construite, on a bien'(x;y) =12 [q(x+y)q(x)q(y)].2.Rang d'une forme bilineaire Soient'une forme bilineaire denie sur un espace vectorielEde dimension nie etxety deux vecteurs deE.

On denit deux formes lineaires'xet'ydeEpar

8y2E; 'x(y) ='(x;y)

8x2E; 'y(x) ='(x;y)

NotonsEle dual deE(c'est-a-dire l'ensemble des formes lineaires denies surE). Les deux applications deEdansEdenies parx7!'xety7!'ysont lineaires deE dansE. Soient (e1;:::;en) une base deE,Mla matrice de'dans cette base et (e1;:::;en) la base duale. On a, pour tout 1i;jn,mij='(ei;ej) donc la matricetM(respectivement M) represente l'endomorphismex7!'x(respectivementx7!'y) de la base (e1;:::;en) dans la base (e1;:::;en). En eet, lajeme colonne de la matrice representant l'endomorphismex7!'xdans les bases denies precedemment est la matrice-colonne des coordonnees de'ejdans la base (e1;:::;en). Posons'ej=nX i=1 iei. Comme'ej(ek) =nX i=1 iei(ek) =k='(ej;ek), la matrice representant l'endomorphismex7!'xde la base (e1;:::;en) dans la base (e1;:::;en) est donc bientM. De m^eme, poury7!'y. Denition 12 {On appelle rangd'une forme bilineaire'denie sur un espace vectorielE de dimension nie le rang commun de ces deux applications. On dit que'est non degenereesi son rang est egal a la dimension deE. Elle est dite degenereesinon. Proposition 13 {Une forme bilineaire est non degeneree si et seulement si la matrice quiquotesdbs_dbs2.pdfusesText_2