[PDF] [PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis, calculer A-1 Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et donne 



Previous PDF Next PDF





[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis, calculer A-1 Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et donne 



[PDF] TD 4: Matrices

Exercice 4 Déterminer en fonction de a et b réels toutes les matrices de M2,2(R) qui commutent avec la matrice ( a 0



[PDF] Exercices de révision sur les matrices - Vous pouvez nous joindre ici

Exercice 1 On considère les matrices à coefficients réels et définies par : La matrice est une matrice triangulaire avec uniquement des zéros sur la diagonale



[PDF] MATRICES EXERCICES CORRIGES - Home opsuniv-batna2dz

Exercice n°3 1) Donner une matrice dont la transposée est égale à son opposée 2) Donnez la matrice A telle que pour tout indice i et j avec, 1 3 i≤ ≤ et 1 3



[PDF] Matrices CORRECTION - Licence de mathématiques Lyon 1

Matrices Pascal Lainé 1 Matrices Exercice 1 Pour une matrice à une ligne et une colonne de ℳ1(ℝ) on posera ( ) = Soit = ( 1 2 3 ) 



[PDF] Applications linéaires, matrices, déterminants - Licence de

2 Déterminer ker( ) Allez à : Correction exercice 1 Exercice 2 Remarque : Avec les matrices on retrouve ce résultat plus facilement Allez à : Exercice 16



[PDF] Calcul matriciel

2 2 Exercices 2 5 Corrigé du devoir de E dans E La composée de cette application avec f a pour matrice In : c'est l'ap- plication identique Donc cette 



[PDF] 87 EXERCICES MATHÉMATIQUES

87 EXERCICES DE base de E Exercice 5 On considère une matrice carrée d 'ordre n à coefficients réels S = pij comparaison avec une intégrale impropre



[PDF] Matrices - Spé Maths Exercices Corrigés en vidéo avec le cours sur

2 Si A et B sont deux matrices carrées de même ordre et si AB = O (avec O la matrice carrée nulle de même ordre) alors 

[PDF] exercices de matrice avec solution

[PDF] exercices de mécanique des fluides avec solutions

[PDF] exercices de mecanique du point materiel prepa

[PDF] exercices de pharmacologie

[PDF] exercices de phénomènes de transfert de chaleur

[PDF] exercices de physique sur les forces

[PDF] exercices de prise de notes écrites

[PDF] exercices de prononciation et d'articulation

[PDF] exercices de raisonnement logique mathématiques

[PDF] exercices de relaxation ? l'école

[PDF] exercices de relaxation en classe maternelle

[PDF] exercices de relaxation pdf

[PDF] exercices de rotation geometrie

[PDF] exercices de saut en longueur

[PDF] exercices de théâtre pour débutants

[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercices Corriges

Matrices

Exercice 1{Considerons les matrices a coecients reels :

A= 2 1

2 1! ; B= 1 2 24!
C=0 B @1 1 2 1 0 1 11 01 C

A; D=0

B @11 1 1 0 1

0 1 01

C

A; E= 11 1

1 0 1!

Si elles ont un sens, calculer les matricesAB,BA,CD,DC,AE,CE.

Exercice 2{(extrait partiel novembre 2011)

On considere les matrices a coecients reels :

A= 1 1

1 1!

B= 431

2 1 1!

C= 1 2

12! Calculer, s'ils ont un sens, les produitsAB;BA;AC;CA;B2. Exercice 3{On considere les matrices a coecients reels :

A= 1 3

2 4!

B= 431

2 1 1!

C= 43 2 1!

1) Calculer s'ils ont un sens les produitsAB;BA;AC;CA;BC;CB;B2.

2) En deduire, sans plus de calcul, queAetCsont inversibles et preciser leurs inverses.

Exercice 4{SoitAla matrice deM2(R) etBla matrice deM2;3(R) denies par :

A= 4 3

1 1! ; B= 1 0 2 1 11! Si elles ont un sens, calculer les matricesAB,BA,A2,B2etA+ 2Id2.

Exercice 5{SoitA;B;Cles matrices :

A= 22 0

4 22!

2M2;3(R); B=0

B @1 1 1 2 131
C

A2M3;2(R); C= 11

1 2!

2M2;2(R)

Determiner les produits denis 2 a 2 de ces trois matrices. Exercice 6{Ti;j() etant la matrice elementaire qui correspond a ajouter a la ligneile produit parde la ligne j, preciser la matriceT2;1(12 ) deM2;2(R), puis la matriceT1;2(2)T2;1(12 1 Exercice 7{1) Preciser les matrices elementaires deM3;3(R) : D

2(2); T3;2(3); T2;1(2):

2) Calculer la matriceA=T3;2(3)D2(2)T2;1(2).

3) DonnerA1sous forme de produit de matrices elementaires. Puis, calculerA1.

Exercice 8{Appliquer avec precision aux matricesMetNsuivantes l'algorithme du cours qui determine si une matrice est inversible et donne dans ce cas son inverse : M= 23 11!

2M2;2(R)et N= 23

46!

2M2;2(R):

Exercice 9{(extrait partiel novembre 2011)

1) En utilisant l'algorithme du cours, montrer que la matrice suivante est inversible et preciser

son inverse :

A= 1 2

3 4!

2) Puis, donner une expression deA1et deAcomme produit de matrices elementaires.

Exercice 10{1) Appliquer avec precision l'algorithme du cours pour inverser la matrice : M= 11 23!

2M2;2(R):

2 ) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

Exercice 11{) Appliquer avec precision l'algorithme du cours pour inverser la matrice :

M= 2 1

3 2!

2M2;2(R):

Preciser une expression deM1, puis deMcomme produit de matrices elementaires. Exercice 12{SoitAetBdeux matrices carrees de m^eme ordre, on suppose que la matrice ABest inversible d'inverse la matriceC. Montrer alors queBest inversible et preciserA1.

Exercice 13{(extrait partiel novembre 2011)

SoitXetYdeux matrices carrees non nulles de m^eme taille a coecients reels, montrer que siXY= 0, les matricesXetYne sont pas inversibles.

Exercice 14{SoitM=0

B @2 4 1 2 5 1

1 2 11

C A.

1) Montrer en appliquant les algorithmes du cours queMest inversible. Preciser la matrice

M

1ainsi que la decomposition deM1comme produit de matrices elementaires.

2

2) En deduire une decomposition deMcomme produit de matrices elementaires.

3) Montrer que nous avons aussiM=T2;3(1)T1;3(1)T3;1(1)T2;1(1)T1;2(2).

4) En deduire une deuxieme expression deM1comme produit de matrices elementaires.

quotesdbs_dbs7.pdfusesText_5