[PDF] [PDF] Produit scalaire

Définition : La norme d'un vecteur u AB = est le nombre réel positif u AB = 2) Produit scalaire de 2 vecteurs colinéaires Définition : Soit u et v deux vecteurs 



Previous PDF Next PDF





[PDF] PRODUIT SCALAIRE - maths et tiques

La notion de produit scalaire est apparue pour les besoins de la physique Attention : Le produit scalaire de deux vecteurs est un nombre réel Le projeté orthogonal du point M sur la droite d est le point d'intersection H de la droite d avec 



[PDF] PRODUIT SCALAIRE DANS LESPACE - maths et tiques

Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et Alors et sont non colinéaires et 



[PDF] Produit scalaire - Maths-francefr

Ainsi, deux droites de l'espace sont orthogonales si et seulement si des vecteurs directeurs de ces droites sont orthogonaux Ce résultat fournit un outil très 



[PDF] (produit scalaire \( déf\))

On dit que deux vecteurs non nuls sont orthogonaux lorsque leurs directions sont orthogonales Par convention, le vecteur nul est orthogonal à tout autre vecteur 



[PDF] Produit scalaire

Définition : La norme d'un vecteur u AB = est le nombre réel positif u AB = 2) Produit scalaire de 2 vecteurs colinéaires Définition : Soit u et v deux vecteurs 



[PDF] Leçon n°17 : Produit scalaire

5 mar 2018 · On appel vecteur normal à une droite (d) tout vecteur non nul orthogonale à un vecteur directeur de (d) Propriétés : 1) Deux droites sont 



[PDF] Définition du produit scalaire - Parfenoff org

On dit que et sont orthogonaux lorsque les droites (AB) et (CD) sont perpendiculaires Remarque: Le vecteur nul est orthogonal à tous les vecteurs 2 ) Théorème :



[PDF] Mathématiques en premi`ere S Produit scalaire dans le plan

— On se ram`ene alors au produit scalaire de deux vecteurs colinéaires Démontrons `a titre d'exercice, ce dernier résultat −−→ AB −→ AC = − 



[PDF] Produit scalaire

Définition : Soient et deux vecteurs non nuls Soient A, B et C des points tels que : et Soit H le projeté orthogonal de C sur (AB) On appelle produit scalaire de

[PDF] bilan de matière tableau d'avancement

[PDF] bilan de matiere 1ere s

[PDF] bilan de matière physique

[PDF] on considère la suite un définie par u0 1 et pour tout entier naturel n un 1 f un

[PDF] donner les valeurs de u 1 et u 4

[PDF] on considere la fonction f definie sur

[PDF] facture décompte

[PDF] comment lire une facture d'électricité

[PDF] exemple facture edf pdf

[PDF] comment lire facture sonelgaz

[PDF] comment lire une facture en comptabilité

[PDF] différence entre décompte et acompte

[PDF] numero client edf 10 chiffres

[PDF] excel formule moyenne pondérée

[PDF] excel moyenne pondérée tableau croisé dynamique

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853. I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur

u et deux points A et B tels que u =AB . La norme du vecteur u , notée u , est la distance AB. 2) Définition du produit scalaire Définition : Soit u et v deux vecteurs du plan. On appelle produit scalaire de u par v , noté u .v , le nombre réel définit par : - u .v =0 , si l'un des deux vecteurs u et v est nul - u .v =u ×v

×cosu

;v , dans le cas contraire. u .v se lit " u scalaire v ". Remarque : Si AB et AC sont deux représentants des vecteurs non nuls u et v alors : u .v =AB .AC =AB

×AC

×cosBAC

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frExemple : Vidéo https://youtu.be/CJxwKG4mvWs Soit un triangle équilatéral ABC de côté a.

AB .AC =AB

×AC

×cosBAC

=a×a×cos60° =a 2

×0,5

a 2 2 Attention : Le produit scalaire de deux vecteurs est un nombre réel. Ecrire par exemple u .v =0

est une maladresse à éviter ! 3) Propriété de symétrie du produit scalaire Propriété : Pour tout vecteur

u et v , on a : u .v =v .u

Démonstration : On suppose que

u et v sont non nuls (démonstration évidente dans la cas contraire). u .v =u ×v

×cosu

;v =v ×u

×cosu

;v =v ×u

×cos-v

;u =v ×u

×cosv

;u =v .u

4) Opérations sur les produits scalaires Propriétés : Pour tous vecteurs

u v et w , on a : 1) u .v +w =u .v +u .w 2) u .kv =ku .v , avec k un nombre réel. - Admis -

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 5) Identités remarquables Propriétés : Pour tous vecteurs

u et v , on a : 1) u +v 2 =u 2 +2u .v +v 2 2) u -v 2 =u 2 -2u .v +v 2 3) u +v u -v =u 2 -v 2

Démonstration pour le 2) :

u -v 2 =u -v u -v =u .u -u .v -v .u +v .v =u 2 -2u .v +v 2

II. Produit scalaire et norme Soit un vecteur

u , on a : u .u =u ×u

×cosu

;u =u 2

×cos0=u

2 et u .u =u 2

On a ainsi :

u 2 =u .u =u 2

Propriété : Soit

u et v deux vecteurs. On a : u .v 1 2 u 2 +v 2 -u -v 2 et u .v 1 2 u +vquotesdbs_dbs22.pdfusesText_28